Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2310843, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38247199

RESUMO

LiNO3 has attracted intensive attention as a promising electrolyte additive to regulate Li deposition behavior as it can form favorable Li3 N, LiNx Oy species to improve the interfacial stability. However, the inferior solubility in carbonate-based electrolyte restricts its application in high-voltage Li metal batteries. Herein, an artificial composite layer (referred to as PML) composed of LiNO3 and PMMA is rationally designed on Li surface. The PML layer serves as a reservoir for LiNO3 release gradually to the electrolyte during cycling, guaranteeing the stability of SEI layer for uniform Li deposition. The PMMA matrix not only links the nitrogen-containing species for uniform ionic conductivity but also can be coordinated with Li for rapid Li ions migration, resulting in homogenous Li-ion flux and dendrite-free morphology. As a result, stable and dendrite-free plating/stripping behaviors of Li metal anodes are achieved even at an ultrahigh current density of 20 mA cm-2 (>570 h) and large areal capacity of 10 mAh cm-2 (>1200 h). Moreover, the Li||LiFePO4 full cell using PML-Li anode undergoes stable cycling for 2000 cycles with high-capacity retention of 94.8%. This facile strategy will widen the potential application of LiNO3 in carbonate-based electrolyte for practical LMBs.

2.
Nanomicro Lett ; 16(1): 78, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190094

RESUMO

The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth. Resolving this issue will be key to achieving high-performance lithium metal batteries (LMBs). Herein, we construct a lithium nitrate (LiNO3)-implanted electroactive ß phase polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) crystalline polymorph layer (PHL). The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels. These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes, decreasing the growth of lithium dendrites. The stretched molecular channels can also accelerate the transport of Li ions. The combined effects enable a high Coulombic efficiency of 97.0% for 250 cycles in lithium (Li)||copper (Cu) cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm-2 with ultrahigh Li utilization of 50%. Furthermore, the full cell coupled with PHL-Cu@Li anode and LiFePO4 cathode exhibits long-term cycle stability with high-capacity retention of 95.9% after 900 cycles. Impressively, the full cell paired with LiNi0.87Co0.1Mn0.03O2 maintains a discharge capacity of 170.0 mAh g-1 with a capacity retention of 84.3% after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83. This facile strategy will widen the potential application of LiNO3 in ester-based electrolyte for practical high-voltage LMBs.

3.
Entropy (Basel) ; 25(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136452

RESUMO

The future quantum internet will leverage existing communication infrastructures, including deployed optical fibre networks, to enable novel applications that outperform current information technology. In this scenario, we perform a feasibility study of quantum communications over an industrial 224 km submarine optical fibre link deployed between Southport in the United Kingdom (UK) and Portrane in the Republic of Ireland (IE). With a characterisation of phase drift, polarisation stability and the arrival time of entangled photons, we demonstrate the suitability of the link to enable international UK-IE quantum communications for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...