Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1138, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326391

RESUMO

Two-dimensional (2D) semiconductor-based vertical-transport field-effect transistors (VTFETs) - in which the current flows perpendicularly to the substrate surface direction - are in the drive to surmount the stringent downscaling constraints faced by the conventional planar FETs. However, low-power device operation with a sub-60 mV/dec subthreshold swing (SS) at room temperature along with an ultra-scaled channel length remains challenging for 2D semiconductor-based VTFETs. Here, we report steep-slope VTFETs that combine a gate-controllable van der Waals heterojunction and a metal-filamentary threshold switch (TS), featuring a vertical transport channel thinner than 5 nm and sub-thermionic turn-on characteristics. The integrated TS-VTFETs were realised with efficient current switching behaviours, exhibiting a current modulation ratio exceeding 1 × 108 and an average sub-60 mV/dec SS over 6 decades of drain current. The proposed TS-VTFETs with excellent area- and energy-efficiency could help to tackle the performance degradation-device downscaling dilemma faced by logic transistor technologies.

2.
Nat Nanotechnol ; 18(10): 1139-1146, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37488220

RESUMO

Coherently driven semiconductor quantum dots are one of the most promising platforms for non-classical light sources and quantum logic gates which form the foundation of photonic quantum technologies. However, to date, coherent manipulation of single charge carriers in quantum dots is limited mainly to their lowest orbital states. Ultrafast coherent control of high-orbital states is obstructed by the demand for tunable terahertz pulses. To break this constraint, we demonstrate an all-optical method to control high-orbital states of a hole via a stimulated Auger process. The coherent nature of the Auger process is proved by Rabi oscillation and Ramsey interference. Harnessing this coherence further enables the investigation of the single-hole relaxation mechanism. A hole relaxation time of 161 ps is observed and attributed to the phonon bottleneck effect. Our work opens new possibilities for understanding the fundamental properties of high-orbital states in quantum emitters and for developing new types of orbital-based quantum photonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...