Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 9(4): e10671, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036086

RESUMO

Restoration of extensive tracheal damage remains a significant challenge in respiratory medicine, particularly in instances stemming from conditions like infection, congenital anomalies, or stenosis. The trachea, an essential element of the lower respiratory tract, constitutes a fibrocartilaginous tube spanning approximately 10-12 cm in length. It is characterized by 18 ± 2 tracheal cartilages distributed anterolaterally with the dynamic trachealis muscle located posteriorly. While tracheotomy is a common approach for patients with short-length defects, situations requiring replacement arise when the extent of lesion exceeds 1/2 of the length in adults (or 1/3 in children). Tissue engineering (TE) holds promise in developing biocompatible airway grafts for addressing challenges in tracheal regeneration. Despite the potential, the extensive clinical application of tissue-engineered tracheal substitutes encounters obstacles, including insufficient revascularization, inadequate re-epithelialization, suboptimal mechanical properties, and insufficient durability. These limitations have led to limited success in implementing tissue-engineered tracheal implants in clinical settings. This review provides a comprehensive exploration of historical attempts and lessons learned in the field of tracheal TE, contextualizing the clinical prerequisites and vital criteria for effective tracheal grafts. The manufacturing approaches employed in TE, along with the clinical application of both tissue-engineered and non-tissue-engineered approaches for tracheal reconstruction, are discussed in detail. By offering a holistic view on TE substitutes and their implications for the clinical management of long-segment tracheal lesions, this review aims to contribute to the understanding and advancement of strategies in this critical area of respiratory medicine.

2.
Eur J Cardiothorac Surg ; 65(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38530803

RESUMO

OBJECTIVES: Tracheal reconstruction post-extensive resection remains an unresolved challenge in thoracic surgery. This study evaluates the use of aortic allografts (AAs) for tracheal replacement and reconstruction in a rat model, aiming to elucidate the underlying mechanisms of tracheal regeneration. METHODS: AAs from female rats were employed for tracheal reconstruction in 36 male rats, with the replacement exceeding half of the tracheal length. To avert collapse, silicone stents were inserted into the AA lumens. No immunosuppressive therapy was administered. The rats were euthanized biweekly, and the AAs were examined for neovascularization, cartilage formation, respiratory epithelial ingrowth, submucosal gland regeneration and the presence of the Sex-determining region of Y-chromosome (SRY) gene. RESULTS: All procedures were successfully completed without severe complications. The AA segments were effectively integrated into the tracheal framework, with seamless distinction at suture lines. Histological analysis indicated an initial inflammatory response, followed by the development of squamous and mucociliary epithelia, new cartilage ring formation and gland regeneration. In situ hybridization identified the presence of the SRY gene in newly formed cartilage rings, confirming that regeneration was driven by recipient cells. CONCLUSIONS: This study demonstrates the feasibility of AAs transforming into functional tracheal conduits, replicating the main structural and functional characteristics of the native trachea. The findings indicate that this approach offers a novel pathway for tissue regeneration and holds potential for treating extensive tracheal injuries.


Assuntos
Aorta , Procedimentos de Cirurgia Plástica , Masculino , Feminino , Animais , Ratos , Estudos de Viabilidade , Aorta/cirurgia , Traqueia/cirurgia , Traqueia/fisiologia , Stents , Aloenxertos/cirurgia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA