Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
EMBO Rep ; 25(6): 2550-2570, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38730209

RESUMO

Transmembrane protein 268 (TMEM268) is a novel, tumor growth-related protein first reported by our laboratory. It interacts with the integrin subunit ß4 (ITGB4) and plays a positive role in the regulation of the ITGB4/PLEC signaling pathway. Here, we investigated the effects and mechanism of TMEM268 in anti-infectious immune response in mice. Tmem268 knockout in mice aggravated cecal ligation and puncture-induced sepsis, as evidenced by higher bacterial burden in various tissues and organs, congestion, and apoptosis. Moreover, Tmem268 deficiency in mice inhibited phagocyte adhesion and migration, thus decreasing phagocyte infiltration at the site of infection and complement-dependent phagocytosis. Further findings indicated that TMEM268 interacts with CD11b and inhibits its degradation via the endosome-lysosome pathway. Our results reveal a positive regulatory role of TMEM268 in ß2 integrin-associated anti-infectious immune responses and signify the potential value of targeting the TMEM268-CD11b signaling axis for the maintenance of immune homeostasis and immunotherapy for sepsis and related immune disorders.


Assuntos
Antígeno CD11b , Proteínas de Membrana , Camundongos Knockout , Sepse , Transdução de Sinais , Animais , Camundongos , Antígeno CD11b/metabolismo , Antígeno CD11b/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sepse/genética , Sepse/imunologia , Sepse/metabolismo , Fagocitose , Adesão Celular/genética , Regulação para Baixo , Movimento Celular/genética , Deleção de Genes , Fagócitos/metabolismo , Fagócitos/imunologia , Camundongos Endogâmicos C57BL , Humanos , Lisossomos/metabolismo , Endossomos/metabolismo
2.
Phys Rev Lett ; 132(11): 118301, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563944

RESUMO

We investigate collective dynamics in a binary mixture of programmable robots in experiments and simulations. While robots of the same species align their motion direction, interaction between species is distinctly nonreciprocal: species A aligns with B and species B antialigns with A. This nonreciprocal interaction gives rise to the emergence of collective chiral motion that can be stabilized by limiting the robot angular speed to be below a threshold. Within the chiral phase, increasing the robot density or extending the range of local repulsive interactions can drive the system through an absorbing-active transition. At the transition point, the robots exhibit a remarkable capacity for self-organization, forming disordered hyperuniform states.

3.
Cell Death Dis ; 14(12): 855, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129372

RESUMO

The E3 ubiquitin ligase RING finger protein 115 (RNF115), also known as breast cancer-associated gene 2 (BCA2), has been linked with the growth of some cancers and immune regulation, which is negatively correlated with prognosis. Here, it is demonstrated that the RNF115 deletion can protect mice from acute liver injury (ALI) induced by the treatment of lipopolysaccharide (LPS)/D-galactosamine (D-GalN), as evidenced by decreased levels of alanine aminotransaminase, aspartate transaminase, inflammatory cytokines (e.g., tumor necrosis factor α and interleukin-6), chemokines (e.g., MCP1/CCL2) and inflammatory cell (e.g., monocytes and neutrophils) infiltration. Moreover, it was found that the autophagy activity in Rnf115-/- livers was increased, which resulted in the removal of damaged mitochondria and hepatocyte apoptosis. However, the administration of adeno-associated virus Rnf115 or autophagy inhibitor 3-MA impaired autophagy and aggravated liver injury in Rnf115-/- mice with ALI. Further experiments proved that RNF115 interacts with LC3B, downregulates LC3B protein levels and cell autophagy. Additionally, Rnf115 deletion inhibited M1 type macrophage activation via NF-κB and Jnk signaling pathways. Elimination of macrophages narrowed the difference in liver damage between Rnf115+/+ and Rnf115-/- mice, indicating that macrophages were linked in the ALI induced by LPS/D-GalN. Collectively, for the first time, we have proved that Rnf115 inactivation ameliorated LPS/D-GalN-induced ALI in mice by promoting autophagy and attenuating inflammatory responses. This study provides new evidence for the involvement of autophagy mechanisms in the protection against acute liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Falência Hepática Aguda , Animais , Camundongos , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Galactosamina/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Falência Hepática Aguda/metabolismo , NF-kappa B/metabolismo
4.
Sensors (Basel) ; 23(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37430840

RESUMO

When performing indoor tasks, miniature swarm robots are suffered from their small size, poor on-board computing power, and electromagnetic shielding of buildings, which means that some traditional localization methods, such as global positioning system (GPS), simultaneous localization and mapping (SLAM), and ultra-wideband (UWB), cannot be employed. In this paper, a minimalist indoor self-localization approach for swarm robots is proposed based on active optical beacons. A robotic navigator is introduced into a swarm of robots to provide locally localization services by actively projecting a customized optical beacon on the indoor ceiling, which contains the origin and the reference direction of localization coordinates. The swarm robots observe the optical beacon on the ceiling via a bottom-up-view monocular camera, and extract the beacon information on-board to localize their positions and headings. The uniqueness of this strategy is that it uses the flat, smooth, and well-reflective ceiling in the indoor environment as a ubiquitous plane for displaying the optical beacon; meanwhile, the bottom-up view of swarm robots is not easily blocked. Real robotic experiments are conducted to validate and analyze the localization performance of the proposed minimalist self-localization approach. The results show that our approach is feasible and effective, and can meet the needs of swarm robots to coordinate their motion. Specifically, for the stationary robots, the average position error and heading error are 2.41 cm and 1.44°; when the robots are moving, the average position error and heading error are less than 2.40 cm and 2.66°.

5.
J R Soc Interface ; 20(204): 20230176, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37464802

RESUMO

A widely mentioned but not experimentally confirmed view (known as the 'criticality hypothesis') argues that biological swarm systems gain optimal responsiveness to perturbations and information processing capabilities by operating near the critical state where an ordered-to-disordered state transition occurs. However, various factors can induce the ordered-disordered transition, and the explicit relationship between these factors and the criticality is still unclear. Here, we present an experimental validation for the criticality hypothesis by employing real programmable swarm-robotic systems (up to 50 robots) governed by Vicsek-like interactions, subject to time-varying stimulus-response and hazard avoidance. We find that (i) not all ordered-disordered motion transitions correspond to the functional advantages for groups; (ii) collective response of groups is maximized near the critical state induced by alignment weight or scale rather than noise and other non-alignment factors; and (iii) those non-alignment factors act to highlight the functional advantages of alignment-induced criticality. These results suggest that the adjustability of velocity or directional coupling between individuals plays an essential role in the acquisition of maximizing collective response by criticality. Our results contribute to understanding the adjustment strategies of animal interactions from a perspective of criticality and provide insights into the design and control of swarm robotics.


Assuntos
Robótica , Animais , Simulação por Computador
6.
Clin Rheumatol ; 42(6): 1635-1643, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36418508

RESUMO

OBJECTIVES: This study aimed to explore the changes of four major inflammasomes in adult-onset Still's disease (AOSD) and preliminarily evaluate the therapeutic effect of carboxyamidotriazole (CAI), which has previously been reported to have the significant anti-inflammatory activity. METHOD: The mRNA expressions of proinflammatory cytokines and inflammasome components in peripheral blood mononuclear cells (PBMCs) from AOSD patients and healthy controls (HC) were determined by reverse transcription-quantitative PCR. Poly(dA:dT)-induced AIM2 inflammasome and flagellin-induced NLRC4 inflammasome activation models were established in bone marrow-derived macrophages (BMDMs). The levels of cytokines in serum and culture supernatants were measured by ELISA method. RESULTS: The serum levels of IL-1ß, IL-6, and TNF-α in AOSD patients were significantly higher than those in HC. However, the mRNA expressions of IL-1ß, IL-6, IL-18, and TNF-α in PBMCs did not differ markedly in AOSD patients in comparison with HC. Significantly increased mRNA levels of AIM2, NLRC4, ASC, and caspase-1 were observed in patients with AOSD when compared with HC, while NLRP1 and NLRP3 showed no change in AOSD samples. In addition, CAI treatment could significantly reduce the levels of IL-1ß, IL-6, and TNF-α secreted by AOSD PBMCs and inhibit AIM2 and NLRC4 inflammasomes activation in BMDMs. CONCLUSIONS: Increased levels of proinflammatory cytokines in AOSD might be associated with NLRC4 and AIM2 inflammasomes activation. CAI is likely to have the therapeutic potential for AOSD by inhibiting NLRC4 and AIM2 inflammasomes activation and reducing the proinflammatory cytokines and worthy of further investigation. These results provide new ideas for elucidating the pathogenesis of AOSD and providing specific targeted therapy. Key points • Significantly higher mRNA levels of AIM2 and NLRC4 inflammsome signaling were observed in AOSD patients compared with health controls, indicating that AIM2 and NLRC4 inflammsome activation might be related to the increased proinflammatory cytokines in AOSD. • CAI treatment markedly reduced the secretion levels of cytokines IL-1ß, IL-6, and TNF-α in AOSD PBMCs and inhibited AIM2 and NLRC4 inflammasome activation.


Assuntos
Inflamassomos , Doença de Still de Início Tardio , Adulto , Humanos , Inflamassomos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Citocinas/metabolismo , Interleucina-1beta/metabolismo , RNA Mensageiro/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação ao Cálcio , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação a DNA
7.
J Pharm Anal ; 12(4): 664-682, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36105162

RESUMO

XueBiJing is an intravenous five-herb injection used to treat sepsis in China. The study aimed to develop a liquid chromatography-tandem mass spectrometry (LC-MS/MS)- or liquid chromatography-ultraviolet (LC-UV)-based assay for quality evaluation of XueBiJing. Assay development involved identifying marker constituents to make the assay therapeutically relevant and building a reliable one-point calibrator for monitoring the various analytes in parallel. Nine marker constituents from the five herbs were selected based on XueBiJing's chemical composition, pharmacokinetics, and pharmacodynamics. A selectivity test (for "similarity of response") was developed to identify and minimize interference by non-target constituents. Then, an intercept test was developed to fulfill "linearity through zero" for each analyte (absolute ratio of intercept to C response, <2%). Using the newly developed assays, we analyzed samples from 33 batches of XueBiJing, manufactured over three years, and found small batch-to-batch variability in contents of the marker constituents (4.1%-14.8%), except for senkyunolide I (26.5%).

8.
Cell Death Dis ; 13(4): 316, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393404

RESUMO

ULK1 is crucial for initiating autophagosome formation and its activity is tightly regulated by post-translational modifications and protein-protein interactions. In the present study, we demonstrate that TMEM189 (Transmembrane protein 189), also known as plasmanylethanolamine desaturase 1 (PEDS1), negatively regulates the proteostasis of ULK1 and autophagy activity. In TMEM189-overexpressed cells, the formation of autophagesome is impaired, while TMEM189 knockdown increases cell autophagy. Further investigation reveals that TMEM189 interacts with and increases the instability of ULK1, as well as decreases its kinase activities. The TMEM189 N-terminal domain is required for the interaction with ULK1. Additionally, TMEM189 overexpression can disrupt the interaction between ULK1 and TRAF6, profoundly impairs K63-linked polyubiquitination of ULK1 and self-association, leading to the decrease of ULK1 stability. Moreover, in vitro and in vivo experiments suggest that TMEM189 deficiency results in the inhibition of tumorigenicity of gastric cancer. Our findings provide a new insight into the molecular regulation of autophagy and laboratory evidence for investigating the physiological and pathological roles of TMEM189.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Enzimas de Conjugação de Ubiquitina , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Fosforilação , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
9.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-955479

RESUMO

XueBiJing is an intravenous five-herb injection used to treat sepsis in China.The study aimed to develop a liquid chromatography-tandem mass spectrometry(LC-MS/MS)-or liquid chromatography-ultraviolet(LC-UV)-based assay for quality evaluation of XueBiJing.Assay development involved identifying marker constituents to make the assay therapeutically relevant and building a reliable one-point cali-brator for monitoring the various analytes in parallel.Nine marker constituents from the five herbs were selected based on XueBiJing's chemical composition,pharmacokinetics,and pharmacodynamics.A selectivity test(for"similarity of response")was developed to identify and minimize interference by non-target constituents.Then,an intercept test was developed to fulfill"linearity through zero"for each analyte(absolute ratio of intercept to C response,<2%).Using the newly developed assays,we analyzed samples from 33 batches of XueBiJing,manufactured over three years,and found small batch-to-batch variability in contents of the marker constituents(4.1%-14.8%),except for senkyunolide I(26.5%).

10.
Exp Ther Med ; 20(2): 1455-1466, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32742379

RESUMO

Carboxyamidotriazole (CAI), originally developed as a non-cytotoxic anti-cancer drug, was shown to have anti-inflammatory activity according to recent studies in a number of animal models of inflammation. However, its mechanism of action has not been characterized. Therefore, the present study was performed to identify the anti-inflammatory action of CAI in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and to identify the signal transduction pathways involved. The in vitro results revealed that CAI had no direct effect on the activity of cyclooxygenase (COX), suggesting a different anti-inflammatory mechanism compared with that of COX-inhibiting non-steroidal anti-inflammatory drugs. Further investigation in RAW264.7 macrophages revealed that CAI decreased the production of nitric oxide via decreasing the LPS-stimulated expression of inducible nitric oxide synthase, and downregulated both mRNA and protein expression levels of the cytokines tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. CAI also significantly reduced the increased DNA-binding activity of nuclear factor (NF)-κB induced by LPS stimulation. With respect to the mechanisms involved on NF-κB activity, CAI exhibited suppression of the phosphorylation and degradation of the inhibitor of nuclear factor-κBα (IκB), and decreased the phosphorylation levels of the p65 subunit and its subsequent nuclear translocation. In addition, CAI significantly decreased the phosphorylated forms of p38, JNK and ERK, which were increased following LPS stimulation, while the total expression levels of p38, JNK and ERK remained unaltered. The results in the present study indicate that CAI alleviates the inflammatory responses of RAW 264.7 macrophages in response to LPS stimulation via attenuating the activation of NF-κB and MAPK signaling pathways and decreasing the levels of pro-inflammatory mediators. This offers a novel perspective for understanding the anti-inflammatory mechanism of CAI and suggests its potential use as a therapeutic treatment in inflammatory diseases with excessive macrophage activation.

11.
Mol Med Rep ; 20(2): 1645-1654, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31257523

RESUMO

Chronic gouty arthritis, caused by a persistent increase in, and the deposition of, soluble uric acid (sUA), can induce pathological chondrocyte destruction; however, the effects of urate transport and intracellular sUA on chondrocyte functionality and viability are yet to be fully determined. Thus, the aim of the present study was to investigate the presence and functionality of a urate transport system in chondrocytes. The expression profiles of two primary urate reabsorptive transporters, glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1), in human articular cartilage and chondrocyte cell lines were examined via western blotting, reverse transcription­quantitative PCR, immunohistochemistry and immunofluorescence. Then, chondrocytes were incubated with exogenous sUA at increasing concentrations. Negative control assays were conducted via the specific knockdown of GLUT9 and URAT1 with lentiviral short hairpin (sh)RNAs, and by pretreatment with benzbromarone, a known inhibitor of the two transporters. Intracellular UA concentrations were measured using colorimetric assays. The expression levels of GLUT9 and URAT1 were determined in cartilage tissues and chondrocyte cell lines. Incubation of chondrocytes with sUA led to a concentration­dependent increase in intracellular urate concentrations, which was inhibited by GLUT9 or URAT1 knockdown, or by benzbromarone pretreatment (27.13±2.70, 44.22±2.34 and 58.46±2.32% reduction, respectively). In particular, benzbromarone further decreased the already­reduced intracellular UA concentrations in HC­shGLUT9 and HC­shURAT1 cells by 46.79±2.46 and 39.79±2.22%, respectively. Cells overexpressing GLUT9 and URAT1 were used as the positive cell control, which showed increased intracellular UA concentrations that could be reversed by treatment with benzbromarone. In conclusion, chondrocytes may possess an active UA transport system. GLUT9 and URAT1 functioned synergistically to transport UA into the chondrocyte cytoplasm, which was inhibited by specific gene knockdowns and drug­induced inhibition. These results may be fundamental in the further investigation of the pathological changes to chondrocytes induced by sUA during gouty arthritis, and identified UA transport processes as potential targets for the early control of chronic gouty arthritis.


Assuntos
Condrócitos/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Ácido Úrico/metabolismo , Transporte Biológico , Cartilagem Articular/metabolismo , Linhagem Celular , Proteínas Facilitadoras de Transporte de Glucose/análise , Células HEK293 , Humanos , Transportadores de Ânions Orgânicos/análise , Proteínas de Transporte de Cátions Orgânicos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...