Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Eye Res ; : 1-9, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717185

RESUMO

PURPOSE: To establish and characterize a dry eye model in New Zealand rabbits by subcutaneous injections of scopolamine hydrobromide (SCOP). METHODS: Twenty New Zealand male rabbits were injected subcutaneously SCOP for 14 consecutive days; subcutaneous saline was used as a negative control. The correlated clinical parameters of ocular surface dryness were detected in vivo using tear secretion and corneal fluorescein staining. The expression of IL-1ß and TNF-α on the ocular surface and in lacrimal glands were analyzed by real-time PCR and western blot on the 14th day. The expression of Mucin-5 subtype AC (MUC5AC) was detected by Immunofluorescence staining in conjunctival tissue. RESULTS: The SCOP-treated rabbits exhibited significantly decreased aqueous tear secretion and increased corneal fluorescein staining scores over time. Both the mRNA expression levels and the protein expression levels of IL-1ß and TNF-α were significantly increased after SCOP treatment compared with those after saline treatment. The loss of conjunctival MUC5AC was found in the SCOP-injected rabbits. Some infiltrated inflammatory cells and atrophic acinar cells were observed in the lacrimal gland after SCOP treatment. The disordered structures of the ocular surface and lacrimal glands were also observed. CONCLUSIONS: This study showed that repeated subcutaneous SCOP injections successfully elicited some of the typical dry eye symptoms commonly seen in humans.

2.
PLoS One ; 19(3): e0298258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446823

RESUMO

Clonal integration of defense or stress signal induced systemic resistance in leaf of interconnected ramets. However, similar effects of stress signal in root are poorly understood within clonal network. Clonal fragments of Centella asiaticas with first-young, second-mature, third-old and fourth-oldest ramets were used to investigate transportation or sharing of stress signal among interconnected ramets suffering from low water availability. Compared with control, oxidative stress in root of the first-young, second-mature and third-old ramets was significantly alleviated by exogenous ABA application to the fourth-oldest ramets as well as enhancement of antioxidant enzyme (SOD, POD, CAT and APX) activities and osmoregulation ability. Surface area and volume in root of the first-young ramets were significantly increased and total length in root of the third-old ramets was significantly decreased. POD activity in root of the fourth-oldest and third-old ramets was significantly enhanced by exogenous ABA application to the first-young ramets. Meanwhile, total length and surface area in root of the fourth-oldest and third-old ramets were significantly decreased. Ratio of belowground to aboveground biomass in the whole clonal fragments was significantly increased by exogenous ABA application to the fourth-oldest or first-young ramets. It is suggested that transportation or sharing of stress signal may induce systemic resistance in root of interconnected ramets. Specially, transportation or sharing of stress signal against phloem flow was observed in the experiment. Possible explanation is that rapid recovery of foliar photosynthesis in first-young ramets subjected to exogenous ABA application can partially reverse phloem flow within clonal network. Thus, our experiment provides insight into ecological implication on clonal integration of stress signal.


Assuntos
Antioxidantes , Centella , Ansiedade , Biomassa , Osmorregulação
3.
Ear Nose Throat J ; : 1455613241230219, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357737

RESUMO

Primary melanoma of the parotid gland is an extremely rare and challenging tumor with a poor prognosis, and its ultrasonic characteristics have yet to be reported. This article presents a case of a 77-year-old man with a left parotid mass that was confirmed as a melanoma following surgery. The ultrasonic features of melanoma were examined in detail, with a particular focus on their diagnostic value. Furthermore, we summarized the clinical characteristics, treatment options, and outcomes associated with primary melanoma of the parotid gland based on a thorough analysis of the available literature.

4.
Plant J ; 115(4): 1114-1133, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177908

RESUMO

Dendrobium officinale is edible and has medicinal and ornamental functions. Polysaccharides and flavonoids, including anthocyanins, are important components of D. officinale that largely determine the nutritional quality and consumer appeal. There is a need to study the molecular mechanisms regulating anthocyanin and polysaccharide biosynthesis to enhance D. officinale quality and its market value. Here, we report that high light (HL) induced the accumulation of polysaccharides, particularly mannose, as well as anthocyanin accumulation, resulting in red stems. Metabolome and transcriptome analyses revealed that most of the flavonoids showed large changes in abundance, and flavonoid and polysaccharide biosynthesis was significantly activated under HL treatment. Interestingly, DoHY5 expression was also highly induced. Biochemical analyses demonstrated that DoHY5 directly binds to the promoters of DoF3H1 (involved in anthocyanin biosynthesis), DoGMPP2, and DoPMT28 (involved in polysaccharide biosynthesis) to activate their expression, thereby promoting anthocyanin and polysaccharide accumulation in D. officinale stems. DoHY5 silencing decreased flavonoid- and polysaccharide-related gene expression and reduced anthocyanin and polysaccharide accumulation, whereas DoHY5 overexpression had the opposite effects. Notably, naturally occurring red-stemmed D. officinale plants similarly have high levels of anthocyanin and polysaccharide accumulation and biosynthesis gene expression. Our results reveal a previously undiscovered role of DoHY5 in co-regulating anthocyanin and polysaccharide biosynthesis under HL conditions, improving our understanding of the mechanisms regulating stem color and determining nutritional quality in D. officinale. Collectively, our results propose a robust and simple strategy for significantly increasing anthocyanin and polysaccharide levels and subsequently improving the nutritional quality of D. officinale.


Assuntos
Dendrobium , Flavonoides , Flavonoides/metabolismo , Antocianinas/metabolismo , Dendrobium/genética , Dendrobium/química , Dendrobium/metabolismo , Polissacarídeos/metabolismo , Perfilação da Expressão Gênica
5.
J Biol Chem ; 299(5): 104670, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024091

RESUMO

Nonphotochemical quenching (NPQ) is an important photoprotective mechanism that quickly dissipates excess light energy as heat. NPQ can be induced in a few seconds to several hours; most studies of this process have focused on the rapid induction of NPQ. Recently, a new, slowly induced form of NPQ, called qH, was found during the discovery of the quenching inhibitor suppressor of quenching 1 (SOQ1). However, the specific mechanism of qH remains unclear. Here, we found that hypersensitive to high light 1 (HHL1)-a damage repair factor of photosystem II-interacts with SOQ1. The enhanced NPQ phenotype of the hhl1 mutant is similar to that of the soq1 mutant, which is not related to energy-dependent quenching or other known NPQ components. Furthermore, the hhl1 soq1 double mutant showed higher NPQ than the single mutants, but its pigment content and composition were similar to those of the wildtype. Overexpressing HHL1 decreased NPQ in hhl1 to below wildtype levels, whereas NPQ in hhl1 plants overexpressing SOQ1 was lower than that in hhl1 but higher than that in the wildtype. Moreover, we found that HHL1 promotes the SOQ1-mediated inhibition of plastidial lipoprotein through its von Willebrand factor type A domain. We propose that HHL1 and SOQ1 synergistically regulate NPQ.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Temperatura Alta , Luz , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação , Fotoquímica , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Plastídeos/metabolismo , Domínios Proteicos , Fator de von Willebrand/química
6.
Cell Rep ; 42(3): 112268, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36933214

RESUMO

The coordination of chloroplast and nuclear genome status is critical for plant cell function. Here, we report that Arabidopsis CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in the chloroplast and the nucleus. CND1 localizes to both compartments, and complete loss of CND1 results in embryo lethality. Partial loss of CND1 disturbs nuclear cell-cycle progression and photosynthetic activity. CND1 binds to nuclear pre-replication complexes and DNA replication origins and regulates nuclear genome stability. In chloroplasts, CND1 interacts with and facilitates binding of the regulator of chloroplast genome stability WHY1 to chloroplast DNA. The defects in nuclear cell-cycle progression and photosynthesis of cnd1 mutants are respectively rescued by compartment-restricted CND1 localization. Light promotes the association of CND1 with HSP90 and its import into chloroplasts. This study provides a paradigm of the convergence of genome status across organelles to coordinately regulate cell cycle to control plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Genoma de Cloroplastos , Cloroplastos/metabolismo , Plantas/genética , Núcleo Celular/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Instabilidade Genômica , Regulação da Expressão Gênica de Plantas
7.
Front Plant Sci ; 14: 1324460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269136

RESUMO

Resistance traits of plants can be activated both at the damaged site and undamaged parts. Systemic resistance induced by local exogenous abscisic acid (ABA) application alleviated negative effect of low water availability on growth performance of clonal plant. However, timing of systemic resistance was poorly understood. Timing of systemic resistance refers to its activation and decay time within clonal network. Clonal fragment of Centella asiatica with four successive ramets (including first-oldest, second-older, third-old and fourth-young ramets) subjected to low water availability (20% soil moisture content) was used to explore effects of local exogenous ABA application on the timing of resistance activation and decay. Systemic resistance activated by local exogenous ABA application after 4 days remained at least 28 days. Compared with control, biomass accumulation of whole clonal fragment, root biomass and ratio of belowground to aboveground biomass significantly increased by local exogenous ABA application after 28 days. It is suggested that rapid activation and delay of resistance response induced by local exogenous ABA application within clonal network may improve fitness of clonal plant subjected to abiotic stress.

8.
PLoS One ; 17(12): e0278656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36459510

RESUMO

Different nutrient supply brings about changes in leaf stoichiometry, which may affect growth rate and primary production of plants. Invasion of alien plants is a severe threat to biodiversity and ecosystem worldwide. A pot experiment was conducted by using three stoloniferous alien plants Wedelia trilobata, Alternanther philoxeroides and Hydrocotyle vulgaris to investigate effects of nutrient supply on their leaf stoichiometry and relative growth rate. Different nitrogen or phosphorus supply was applied in the experiment (N1:1 mmol L-1, N2:4 mmol L-1, and N3:8 mmol L-1, P1:0.15 mmol L-1, P2:0.6 mmol L-1 and P3:1.2 mmol L-1). Nitrogen and phosphorus concentrations in leaves of the three alien plants significantly increased with increase of nitrogen supply. With increase of phosphorus supply, nitrogen or phosphorus concentration of leaf was complex among the three alien plants. N:P ratio in leaf of the three alien plants subjected to different levels of nutrient supply was various. A positive correlation between relative growth rate and N:P ratio of the leaf is observed in W. trilobata and A. philoxeroides suffering from N-limitation. A similar pattern was not observed in Hydrocotyle vulgaris. We tentatively concluded that correlations between relative growth rate and N: P ratio of the leaf could be affected by species as well as nutrient supply. It is suggested that human activities, invasive history, local abundance of species et al maybe play an important role in the invasion of alien plants as well as relative growth rate.


Assuntos
Araliaceae , Centella , Humanos , Ecossistema , Nutrientes , Folhas de Planta , Nitrogênio , Fósforo
9.
Nat Commun ; 13(1): 7441, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460653

RESUMO

N6-methyladenosine (m6A) modification of mRNAs affects many biological processes. However, the function of m6A in plant photosynthesis remains unknown. Here, we demonstrate that m6A modification is crucial for photosynthesis during photodamage caused by high light stress in plants. The m6A modification levels of numerous photosynthesis-related transcripts are changed after high light stress. We determine that the Arabidopsis m6A writer VIRILIZER (VIR) positively regulates photosynthesis, as its genetic inactivation drastically lowers photosynthetic activity and photosystem protein abundance under high light conditions. The m6A levels of numerous photosynthesis-related transcripts decrease in vir mutants, extensively reducing their transcript and translation levels, as revealed by multi-omics analyses. We demonstrate that VIR associates with the transcripts of genes encoding proteins with functions related to photoprotection (such as HHL1, MPH1, and STN8) and their regulatory proteins (such as regulators of transcript stability and translation), promoting their m6A modification and maintaining their stability and translation efficiency. This study thus reveals an important mechanism for m6A-dependent maintenance of photosynthetic efficiency in plants under high light stress conditions.


Assuntos
Arabidopsis , Fotossíntese , Fotossíntese/genética , Arabidopsis/genética , Inativação Gênica , RNA Mensageiro/genética
10.
J Ophthalmol ; 2021: 9217866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873452

RESUMO

PURPOSE: Corneal endothelial cells are usually exposed to shear stress caused by the aqueous humour, which is similar to the exposure of vascular endothelial cells to shear stress caused by blood flow. However, the effect of fluid shear stress on corneal endothelial cells is still poorly understood. The purpose of this study was to explore whether the shear stress that results from the aqueous humour influences corneal endothelial cells. METHODS: An in vitro model was established to generate fluid flow on cells, and the effect of fluid flow on corneal endothelial cells after exposure to two levels of shear stress for different durations was investigated. The mRNA and protein expression of corneal endothelium-related markers in rabbit corneal endothelial cells was evaluated by real-time PCR and western blotting. RESULTS: The expression of the corneal endothelium-related markers ZO-1, N-cadherin, and Na+-K+-ATPase in rabbit corneal endothelial cells (RCECs) was upregulated at both the mRNA and protein levels after exposure to shear stress. CONCLUSION: This study demonstrates that RCECs respond favourably to fluid shear stress, which may contribute to the maintenance of corneal endothelial cell function. Furthermore, this study also provides a theoretical foundation for further investigating the response of human corneal endothelial cells to the shear stress caused by the aqueous humour.

11.
Exp Eye Res ; 202: 108286, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035554

RESUMO

Retinoblastoma (RB) is the most common intraocular malignant tumour in infants, and chemotherapy has been the primary therapy method in recent years. PRMT5 is an important member of the protein arginine methyltransferase family, which plays an important role in various tumours. Our study showed that PRMT5 was overexpressed in retinoblastoma and played an important role in retinoblastoma cell growth. EPZ015666 is a novel PRMT5 inhibitor, and we found that it inhibited retinoblastoma cell proliferation and led to cell cycle arrest at the G1 phase. At the same time, EPZ015666 regulated cell cycle related protein (P53, P21, P27, CDK2) expression. In brief, our study showed that PRMT5 promoted retinoblastoma growth, the PRMT5 inhibitor EPZ015666 inhibited retinoblastoma in vitro by regulating P53-P21/P27-CDK2 signaling pathways and slowed retinoblastoma growth in a xenograft model.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Isoquinolinas/uso terapêutico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Pirimidinas/uso terapêutico , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , Proteína-Arginina N-Metiltransferases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias da Retina/enzimologia , Neoplasias da Retina/patologia , Retinoblastoma/enzimologia , Retinoblastoma/patologia , Sais de Tetrazólio , Tiazóis , Fatores de Tempo , Transplante Heterólogo
12.
J Cell Physiol ; 236(4): 2606-2615, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32853402

RESUMO

Rabbit corneal endothelial cells are frequently used in pharmacological experiments and are useful for corneal transplant experiments. We performed the present study to analyze the effect of conditioned medium (CM) derived from human umbilical cord mesenchymal stem cells (HUMSCs) on the growth of rabbit corneal endothelial cells (RCECs) and to establish a program for expansion of RCECs in vitro. RCECs were cultured using a CM derived from HUMSCs (HUMSCs-CM) in vitro. The proliferation ability of RCECs cultured in the presence of HUMSCs-CM was evaluated by conducting 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, colony formation, and scratch migration assays. The proliferation ability of RCECs maintained in HUMSCs-CM was significantly enhanced as compared to RCECs cultivated in the control group. Immunofluorescence indicated that zonula occludens-1 (ZO-1) and N-cadherin were located at intercellular junctions. Real-time PCR and western blot analyses demonstrated that the CEC-relative functional markers were expressed in RCECs maintained in HUMSCs-CM. Flow cytometry analyses demonstrated that HUMSCs-CM promoted the G0/G1 entrance to the S phase in RCECs. Our results demonstrated that HUMSCs-CM induced the proliferation of RCECs in vitro and maintained the necessary characteristic phenotypes. The expanded RCECs may provide a promising cell source for experimental research and clinical therapy.


Assuntos
Proliferação de Células , Meios de Cultivo Condicionados/metabolismo , Células Endoteliais/metabolismo , Endotélio Corneano/metabolismo , Células-Tronco Mesenquimais/metabolismo , Comunicação Parácrina , Animais , Caderinas/genética , Caderinas/metabolismo , Pontos de Checagem do Ciclo Celular , Movimento Celular , Células Cultivadas , Humanos , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Fenótipo , Coelhos , Transdução de Sinais , Cordão Umbilical/citologia , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
13.
Exp Eye Res ; 202: 108304, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080301

RESUMO

Retinoblastoma (RB) is the most common intraocular cancer in children, and chemotherapy has been the first-line treatment. However, due to the side effects of chemotherapy drugs, novel treatments must be developed. JQ1, a selective inhibitor of BRD4, suppresses cell growth in several cancers in which BRD4 is overexpressed. In the present study, BRD4 was overexpressed in retinoblastoma, and JQ1 effectively inhibited RB cell proliferation and colony formation by inducing cell cycle arrest and promoting apoptosis. Furthermore, the Myc-P21-CDK2 and Myc-cyclinD3/CDK6 pathways were activated in RB cells treated with JQ1, and an animal experiment suggested that JQ1 significantly inhibited tumour growth in vivo. In conclusion, JQ1 may be a potential drug treatment for retinoblastoma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Azepinas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Neoplasias da Retina/patologia , Retinoblastoma/patologia , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Animais , Western Blotting , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Nus , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias da Retina/genética , Epitélio Pigmentado da Retina/efeitos dos fármacos , Retinoblastoma/genética , Transdução de Sinais , Fatores de Transcrição/genética
14.
Cell Rep ; 32(6): 108019, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783941

RESUMO

Plastid-nucleus genome coordination is crucial for plastid activity, but the mechanisms remain unclear. By treating Arabidopsis plants with the organellar genome-damaging agent ciprofloxacin, we found that plastid genome instability can alter endoreplication and the cell cycle. Similar results are observed in the plastid genome instability mutants of reca1why1why3. Cell division and embryo development are disturbed in the reca1why1why3 mutant. Notably, SMR5 and SMR7 genes, which encode cell-cycle kinase inhibitors, are upregulated in plastid genome instability plants, and the mutation of SMR7 can restore the endoreplication and growth phenotype of reca1why1why3 plants. Furthermore, we establish that the DNA damage response transcription factor SOG1 mediates the alteration of endoreplication and cell cycle triggered by plastid genome instability. Finally, we demonstrate that reactive oxygen species produced in plastids are important for plastid-nucleus genome coordination. Our findings uncover a molecular mechanism for the coordination of plastid and nuclear genomes during plant growth and development.


Assuntos
Arabidopsis , Genomas de Plastídeos , Desenvolvimento Vegetal , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Endorreduplicação , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Instabilidade Genômica , Plastídeos/genética , Plastídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
15.
J Integr Plant Biol ; 62(9): 1418-1432, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31944575

RESUMO

The balance between cellular carbon (C) and nitrogen (N) must be tightly coordinated to sustain optimal growth and development in plants. In chloroplasts, photosynthesis converts inorganic C to organic C, which is important for maintenance of C content in plant cells. However, little is known about the role of chloroplasts in C/N balance. Here, we identified a nuclear-encoded protein LOW PHOTOSYNTHETIC EFFICIENCY2 (LPE2) that it is required for photosynthesis and C/N balance in Arabidopsis. LPE2 is specifically localized in the chloroplast. Both loss-of-function mutants, lpe2-1 and lpe2-2, showed lower photosynthetic activity, characterized by slower electron transport and lower PSII quantum yield than the wild type. Notably, LPE2 is predicted to encode the plastid ribosomal protein S21 (RPS21). Deficiency of LPE2 significantly perturbed the thylakoid membrane composition and plastid protein accumulation, although the transcription of plastid genes is not affected obviously. More interestingly, transcriptome analysis indicated that the loss of LPE2 altered the expression of C and N response related genes in nucleus, which is confirmed by quantitative real-time-polymerase chain reaction. Moreover, deficiency of LPE2 suppressed the response of C/N balance in physiological level. Taken together, our findings suggest that LPE2 plays dual roles in photosynthesis and the response to C/N balance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carbono/metabolismo , Cloroplastos/metabolismo , Nitrogênio/metabolismo , Plastídeos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Fotossíntese/genética , Fotossíntese/fisiologia
16.
Ultrasonics ; 99: 105947, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31284166

RESUMO

Nanobubbles (NBs) have received wide attention as theranostic agents and been extensively explored in various applications, especially in cancer. The aim of this study was to develop a novel kind of NBs which possess high echogenicity and good stability. This novel ultrasonic nanobubbles (ST68/PLA-PEG NBs) consist of perfluoropropane gas stabilized by Span 60 and Tween 80 (ST68) surfactant and synthesized PLA-PEG-NH2 block copolymers, and were prepared through the methods of mechanical shaking and low-speed centrifugation. A series of experiments were carried out to evaluate the physicochemical properties, echogenicity and cytotoxicity of this novel NBs. According to the amount ratio of copolymers to surfactant, the NBs were divided into 5 groups (0%, 5%, 10%, 15% and 20%). Group "10%" were the optimum NBs, with a size of 675.6 nm, polydispersity index of 0.39. Moreover, these NBs gave a maximum contrast intensity of 31.0 ±â€¯0.2 dB over baseline and little loss of contrast signal after 10 min. In conclusion, this novel kind of ST68/PLA-PEG NBs which exhibited a high echogenicity and good stability were successfully prepared, and they may offer a potential strategy for drug delivery and tumor-targeted theranostic.

17.
J Cell Physiol ; 234(12): 22411-22423, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31102271

RESUMO

Retinoblastoma (RB) is the most common type of intraocular malignant tumor that occurs in childhood. AR-42, a member of a newly discovered class of phenylbutyrate-derived histone deacetylase inhibitors, exerts antitumor effects on many cancers. In the present study, we initially evaluated the effect of AR-42 towards RB cells and explored the underlying mechanism in this disease. Our results found that AR-42 showed powerful antitumor effects at low micromolar concentrations by inhibiting cell viability, blocking cell cycle, stimulating apoptosis in vitro, and suppressing RB growth in a mouse subcutaneous tumor xenograft model. Furthermore, the AKT/nuclear factor-kappa B signaling pathway was disrupted in Y79 cells treated with AR-42. In conclusion, we propose that AR-42 might be a promising drug treatment for RB.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fenilbutiratos/farmacologia , Retinoblastoma/tratamento farmacológico , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico
18.
Nanoscale Res Lett ; 14(1): 24, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30649655

RESUMO

Ultrasound-targeted delivery of nanobubbles (NBs) has become a promising strategy for noninvasive drug delivery. The biosafety and drug-transporting ability of NBs have been a research hotspot, especially regarding chitosan NBs due to their biocompatibility and high biosafety. Since the drug-carrying capacity of chitosan NBs and the performance of ultrasound-assisted drug delivery remain unclear, the aim of this study was to synthesize doxorubicin hydrochloride (DOX)-loaded biocompatible chitosan NBs and assess their drug delivery capacity. In this study, the size distribution of chitosan NBs was measured by dynamic light scattering, while their drug-loading capacity and ultrasound-mediated DOX release were determined by a UV spectrophotometer. In addition, a clinical ultrasound imaging system was used to evaluate the ability of chitosan NBs to achieve imaging enhancement, while the biosafety profile of free chitosan NBs was evaluated by a cytotoxicity assay in MCF-7 cells. Furthermore, NB-mediated DOX uptake and the apoptosis of Michigan Cancer Foundation-7 (MCF-7) cells were measured by flow cytometry. The results showed that the DOX-loaded NBs (DOX-NBs) exhibited excellent drug-loading ability as well as the ability to achieve ultrasound enhancement. Ultrasound (US) irradiation promoted the release of DOX from DOX-NBs in vitro. Furthermore, DOX-NBs effectively delivered DOX into mammalian cancer cells. In conclusion, biocompatible chitosan NBs are suitable for ultrasound-targeted DOX delivery and are thus a promising strategy for noninvasive and targeted drug delivery worthy of further investigation.

19.
Med Sci Monit ; 24: 9054-9062, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30546004

RESUMO

BACKGROUND Ultrasound/microbubble (USMB)-mediated sonoporation is a new strategy with minimal procedural invasiveness for targeted and site-specific drug delivery to tumors. The purpose of this study was to explore the effect of different breast cancer cell lines on sonoporation efficiency, and then to identify an optimal combination of USMB parameters to maximize the sonoporation efficiency for each tumor cell line. MATERIAL AND METHODS Three drug-sensitive breast cell lines - MCF-7, MDA-MB-231, and MDA-MB-468 - and 1 multidrug resistance (MDR) cell line - MCF-7/ADR - were chosen. An orthogonal array experimental design approach based on 3 levels of 3 parameters (A: microbubble concentration, 10%, 20%, and 30%, B: sound intensity, 0.5, 1.0, and 1.5 W/cm², C: irradiation time, 30, 60, and 90 s) was employed to optimize the sonoporation efficiency. RESULTS The optimal USMB parameter combinations for different cell lines were diverse. Under optimal parameter combinations, the maximum sonoporation efficiency differences between different breast tumor cell lines were statistically significant (MDA-MB-231: 46.70±5.79%, MDA-MB-468: 53.44±5.69%, MCF-7: 59.88±5.53%, MCF-7/ADR: 65.39±4.01%, P<0.05), so were between drug-sensitive cell line and MDR cell line (MCF-7: 59.88±5.53%, MCF-7/ADR: 65.39±4.01%, p=0.026). CONCLUSIONS Different breast tumor cell lines have their own optimal sonoporation. Drug-resistant MCF-7/ADR cells had higher sonoporation efficiency than drug-sensitive MCF-7 cells. The molecular subtype of tumors should be considered when sonoporation is applied, and optimal parameter combination may have the potential to improve drug-delivery efficiency by increasing the sonoporation efficiency.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Microbolhas/uso terapêutico , Terapia por Ultrassom/métodos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Células MCF-7 , Fenótipo , Projetos de Pesquisa , Ondas Ultrassônicas
20.
Proc Natl Acad Sci U S A ; 115(26): E6075-E6084, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891689

RESUMO

Photosystem II (PSII), a multisubunit protein complex of the photosynthetic electron transport chain, functions as a water-plastoquinone oxidoreductase, which is vital to the initiation of photosynthesis and electron transport. Although the structure, composition, and function of PSII are well understood, the mechanism of PSII biogenesis remains largely elusive. Here, we identified a nuclear-encoded pentatricopeptide repeat (PPR) protein LOW PHOTOSYNTHETIC EFFICIENCY 1 (LPE1; encoded by At3g46610) in Arabidopsis, which plays a crucial role in PSII biogenesis. LPE1 is exclusively targeted to chloroplasts and directly binds to the 5' UTR of psbA mRNA which encodes the PSII reaction center protein D1. The loss of LPE1 results in less efficient loading of ribosome on the psbA mRNA and great synthesis defects in D1 protein. We further found that LPE1 interacts with a known regulator of psbA mRNA translation HIGH CHLOROPHYLL FLUORESCENCE 173 (HCF173) and facilitates the association of HCF173 with psbA mRNA. More interestingly, our results indicate that LPE1 associates with psbA mRNA in a light-dependent manner through a redox-based mechanism. This study enhances our understanding of the mechanism of light-regulated D1 synthesis, providing important insight into PSII biogenesis and the functional maintenance of efficient photosynthesis in higher plants.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Membrana Transportadoras/metabolismo , Complexo de Proteína do Fotossistema II/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Iniciação em Eucariotos/genética , Proteínas de Membrana Transportadoras/genética , Complexo de Proteína do Fotossistema II/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...