Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(3): 033508, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012805

RESUMO

The fast-ion D-alpha diagnostic (FIDA) is employed to detect Dα light emitted by neutralized fast ions during neutral beam injection. A tangentially viewing FIDA has been developed for the HuanLiuqi-2A (HL-2A) tokamak and typically achieves temporal and transverse spatial resolutions of ∼30 ms and ∼5 cm, respectively. A fast-ion tail on the red shifted wing of the FIDA spectrum is obtained and analyzed with the Monte Carlo code FIDASIM. Good agreement has been presented between the measured and simulated spectra. As the FIDA diagnostic's lines of sight intersect the central axis of neutral beam injection with small angles, the beam emission spectrum is observed with a large Doppler shift. Thus, tangentially viewing FIDA could detect only a small portion of fast ions with an energy of ≈ 20 ∼ 31 keV and a pitch angle of ≈ -1 ∼ -0.8. A second FIDA installation with oblique viewing is designed to minimize spectral contaminants.

2.
Rev Sci Instrum ; 92(8): 083509, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470419

RESUMO

A solid state terahertz interferometer has been developed on the recent commissioned HL-2M tokamak. It can work in a wide frequency region of 220-325 GHz, and the terahertz wave is generated from a low frequency phase locked voltage controlled oscillator with the frequency multiplying technique. A phase processor based on field programmable gate array (FPGA) technology is designed for the heterodyne interferometer, and it contributes to real-time display of electron density. To extract phase information, a novel numerical algorithm related to fast Fourier transform is written on the FPGA chip and enables one to obtain phase shift without being affected by amplitude variation induced by plasma absorption or frequency modulation from the outer electromagnetic environment. The interferometer achieves minimum measurable electron density in the order of 1016 m-3. With the plasma diagnosis, electron density and low frequency tearing mode have been measured during the first experimental campaign.

3.
Rev Sci Instrum ; 91(8): 083504, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872906

RESUMO

A new Doppler coherence imaging spectroscopy interferometer has been developed on the HL-2A tokamak for the scrape-off-layer impurity flow measurement. Its spatial resolution is estimated to be up to ∼0.8 mm in the horizontal direction and ∼9 mm in the vertical direction, with a field of view of ∼34°. Its typical temporal resolution is about 1 ms. This salient feature allows for time-resolved 2D measurements in short-time phenomena on HL-2A, such as edge localized modes. Group delay and interference fringe pattern were calibrated with a dedicated calibration system. The robustness of group delay calibration and the feasibility of the extrapolation model for fringe pattern calibration are demonstrated. In this paper, we report the details of the optical instruments, calibration, and the initial experimental results of this Doppler coherence imaging spectroscopy interferometer.

4.
Rev Sci Instrum ; 91(7): 073505, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752858

RESUMO

A Multi-Color (MC) gas puff imaging diagnostic has been developed on HL-2A tokamak. This diagnostic can simultaneously measure two-dimensional (2D, radial, and poloidal) electron density and temperature distributions with a good spatial resolution of 2.5 × 2.5 mm2 and a temporal resolution of about 100 µs at best in edge plasmas. The 2D electron density and temperature distributions are inferred from the ratios of intensities of three different neutral helium emission lines; therefore, it is also referred to as helium beam probe or beam emission spectroscopy on thermal helium. A compact light splitter is used to split the inlet visible emission beam into four channels, and the specific neutral helium lines of the wavelengths λ1 = 587.6 nm, λ2 = 667.8 nm, λ3 = 706.5 nm, and λ4 = 728.1 nm are measured, respectively. This MC diagnostic has been experimentally tested and calibrated on a linear magnetic confinement device Peking University Plasma Test device, and the measured 2D electron density and temperature distributions are compared with the Langmuir probe measurements.

5.
Rev Sci Instrum ; 91(5): 053504, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32486744

RESUMO

A Fast Charge eXchange Recombination Spectroscopy (CXRS) diagnostic with eight radial channels has been implemented on a HuanLiu-2A (HL-2A) tokamak with a time resolution of up to 10 kHz monitoring helium II spectra or 1 kHz monitoring carbon VI spectra. The crucial aspects of the fast CXRS are to improve the spectral intensity and the acquisition frequency. The spectral intensity has been greatly enhanced by customized fiber bundles. The main boost in optimizing the acquisition frequency is achieved by binning more pixel rows of the charge coupled device (CCD) representing one radial channel and by reducing the effective image area of the CCD. Consequently, the sawtooth oscillations of ion temperature and rotation velocity are continuously observed for the first time in the HL-2A tokamak.

6.
Rev Sci Instrum ; 89(10): 10D122, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399666

RESUMO

A beam emission spectroscopy system is being developed and deployed on the HL-2A tokamak to measure local low wavenumber (k ⊥ ρ i < 1) density fluctuations by measuring the Doppler-shifted emission from a 50 kV deuterium heating neutral beam. High spatial resolution (Δr ≤ 1 cm, Δz ≤ 1.5 cm) measurements are achieved with customized in-vacuum optics. High frequency, high-gain preamplifiers sample the light intensity at a Nyquist frequency of 1 MHz and achieve a high S/N ratio via high optical throughput, low-noise preamplifiers, and high quantum efficiency photodiodes. A first set of 16 detector channels [configured in an 8 (radial) × 2 (poloidal) array] has been installed and tested at HL-2A, covering the radial range r/a = 0.8-1.1. The frequency and wavenumber spectra have been measured under different plasma conditions. Initial measurements have demonstrated the capability of measuring edge plasma density fluctuation spectra and the poloidal flow velocity fields with a high S/N ratio.

7.
Rev Sci Instrum ; 87(11): 11E319, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910627

RESUMO

In this article, a Bayesian tomography method using non-stationary Gaussian process for a prior has been introduced. The Bayesian formalism allows quantities which bear uncertainty to be expressed in the probabilistic form so that the uncertainty of a final solution can be fully resolved from the confidence interval of a posterior probability. Moreover, a consistency check of that solution can be performed by checking whether the misfits between predicted and measured data are reasonably within an assumed data error. In particular, the accuracy of reconstructions is significantly improved by using the non-stationary Gaussian process that can adapt to the varying smoothness of emission distribution. The implementation of this method to a soft X-ray diagnostics on HL-2A has been used to explore relevant physics in equilibrium and MHD instability modes. This project is carried out within a large size inference framework, aiming at an integrated analysis of heterogeneous diagnostics.

8.
Phys Rev Lett ; 117(14): 145002, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740841

RESUMO

The synchronization of geodesic acoustic modes (GAMs) and magnetic fluctuations is identified in the edge plasmas of the HL-2A tokamak. Mesoscale electric fluctuations (MSEFs) having components of a dominant GAM, and m/n=6/2 potential fluctuations are found at the same frequency as that of the magnetic fluctuations of m/n=6/2 (m and n are poloidal and toroidal mode numbers, respectively). The temporal evolutions of the MSEFs and the magnetic fluctuations clearly show the frequency entrainment and the phase lock between the GAM and the m/n=6/2 magnetic fluctuations. The results indicate that GAMs and magnetic fluctuations can transfer energy through nonlinear synchronization. Such nonlinear synchronization may also contribute to low-frequency zonal flow formation, reduction of turbulence level, and thus confinement regime transitions.

9.
Rev Sci Instrum ; 87(9): 093503, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27782572

RESUMO

On HL-2A tokamak, supersonic molecular beam injection (SMBI) has been developed as a routine refueling method. The key components of the system are an electromagnetic valve and a conic nozzle. The valve and conic nozzle are assembled to compose the simplified Laval nozzle for generating the pulsed beam. The appurtenance of the system includes the cooling system serving the cooled SMBI generation and the in situ calibration component for quantitative injection. Compared with the conventional gas puffing, the SMBI features prompt response and larger fueling flux. These merits devote the SMBI a good fueling method, an excellent plasma density feedback control tool, and an edge localized mode mitigation resource.

10.
Phys Rev Lett ; 117(4): 045001, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27494476

RESUMO

The impact of impurity ions on a pedestal has been investigated in the HL-2A Tokamak, at the Southwestern Institute of Physics, Chengdu, China. Experimental results have clearly shown that during the H-mode phase, an electromagnetic turbulence was excited in the edge plasma region, where the impurity ions exhibited a peaked profile. It has been found that double impurity critical gradients are responsible for triggering the turbulence. Strong stiffness of the impurity profile has been observed during cyclic transitions between the I-phase and H-mode regime. The results suggest that the underlying physics of the self-regulated edge impurity profile offers the possibility for an active control of the pedestal dynamics via pedestal turbulence.

11.
Rev Sci Instrum ; 87(6): 063503, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27370450

RESUMO

A new radial neutron camera system has been developed and operated recently in the HL-2A tokamak to measure the spatial and time resolved 2.5 MeV D-D fusion neutron, enhancing the understanding of the energetic-ion physics. The camera mainly consists of a multichannel collimator, liquid-scintillation detectors, shielding systems, and a data acquisition system. Measurements of the D-D fusion neutrons using the camera have been successfully performed during the 2015 HL-2A experiment campaign. The measurements show that the distribution of the fusion neutrons in the HL-2A plasma has a peaked profile, suggesting that the neutral beam injection beam ions in the plasma have a peaked distribution. It also suggests that the neutrons are primarily produced from beam-target reactions in the plasma core region. The measurement results from the neutron camera are well consistent with the results of both a standard (235)U fission chamber and NUBEAM neutron calculations. In this paper, the new radial neutron camera system on HL-2A and the first experimental results are described.

12.
Rev Sci Instrum ; 85(10): 103503, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25362389

RESUMO

A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ∼1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8-7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode).

13.
Rev Sci Instrum ; 85(11): 11E402, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430309

RESUMO

A 32/64-channel Charge eXchange Recombination Spectroscopy (CXRS) and a 7-channel motional Stark effect (MSE) polarimeter have been developed on the HL-2A tokamak. To extract the maximum time resolution of the system, the incidence fibers of the spectrometer are pitch-controlled; and the double-slit fiber bundle can increase the spatial channels with one charge-coupled device detector. The ion temperature and plasma rotation with time and spatial resolutions up to 5 ms and 1 cm are obtained. Sawtooth oscillation, transition from intermediate phase (I phase) to high confinement mode (H mode) can be clearly observed by the CXRS. The spectrometer can be utilized as the main component of the MSE polarimeter, which can effectively overcome the weak Stark effect. The pitch angles of magnetic field are obtained for 7 spatial points covering 24 cm along major radius with time resolution of 40 ms.

14.
Rev Sci Instrum ; 85(5): 053502, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24880364

RESUMO

A new scintillator-based lost fast-ion probe (SLIP) has been developed and operated in the HL-2A tokamak [L. W. Yan, X. R. Duan, X. T. Ding, J. Q. Dong, Q. W. Yang, Yi Liu, X. L. Zou, D. Q. Liu, W. M. Xuan, L. Y. Chen, J. Rao, X. M. Song, Y. Huang, W. C. Mao, Q. M. Wang, Q. Li, Z. Cao, B. Li, J. Y. Cao, G. J. Lei, J. H. Zhang, X. D. Li, W. Chen, J. Chen, C. H. Cui, Z. Y. Cui, Z. C. Deng, Y. B. Dong, B. B. Feng, Q. D. Gao, X. Y. Han, W. Y. Hong, M. Huang, X. Q. Ji, Z. H. Kang, D. F. Kong, T. Lan, G. S. Li, H. J. Li, Qing Li, W. Li, Y. G. Li, A. D. Liu, Z. T. Liu, C. W. Luo, X. H. Mao, Y. D. Pan, J. F. Peng, Z. B. Shi, S. D. Song, X. Y. Song, H. J. Sun, A. K. Wang, M. X. Wang, Y. Q. Wang, W. W. Xiao, Y. F. Xie, L. H. Yao, D. L. Yu, B. S. Yuan, K. J. Zhao, G. W. Zhong, J. Zhou, J. C. Yan, C. X. Yu, C. H. Pan, Y. Liu, and the HL-2A Team, Nucl. Fusion 51, 094016 (2011)] to measure the losses of neutral beam ions. The design of the probe is based on the concept of the α-particle detectors on Tokamak Fusion Test Reactor (TFTR) using scintillator plates. The probe is capable of traveling across an equatorial plane port and sweeping the aperture angle rotationally with respect to the axis of the probe shaft by two step motors, in order to optimize the radial position and the collimator angle. The energy and the pitch angle of the lost fast ions can be simultaneously measured if the two-dimensional image of scintillation light intensity due to the impact of the lost fast ions is detected. Measurements of the fast-ion losses using the probe have been performed during HL-2A neutral beam injection discharges. The clear experimental evidence of enhanced losses of beam ions during disruptions has been obtained by means of the SLIP system. A detailed description of the probe system and the first experimental results are reported.

15.
Rev Sci Instrum ; 85(5): 053508, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24880370

RESUMO

A 7-channel motional Stark effect polarimeter based on four polarizers and a spectrometer has been developed in the HL-2A tokamak, which is the first time successful utilizing this kind of polarimeter on a tokamak. The accuracy of the angle can reach ±0.25° in the calibration experiments. Pilot experiments of measuring the magnetic pitch angle have been successfully carried out in the weak motional Stark effect plasma discharge with toroidal magnetic field of ~1.3 T and beam energy of ~25 keV/amu. The pitch angles of magnetic field are obtained for 7 spatial points covering 24 cm along major radius with time resolution of 40 ms; the profiles of safety factor are obtained by combining with the Equilibrium and Reconstruction Fitting Code. The core value of safety factor (q) is less than 1 during the sawtooth oscillation and the position of q = 1 surface is well consistent with the results measured by soft X-ray array.

16.
Rev Sci Instrum ; 85(2): 023510, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593364

RESUMO

A novel 32-channel electron cyclotron emission radiometer has been designed and tested for the measurement of electron temperature profiles on the HL-2A tokamak. This system is based on the intermediate frequency filter detection technique, and has the features of wide working frequency range and high spatial resolution. Two relative calibration methods have been investigated: sweeping the toroidal magnetic field and hopping the output frequency of the local oscillator. Preliminary results show that both methods can ensure reasonable profiles.

17.
Rev Sci Instrum ; 85(1): 013507, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517765

RESUMO

The frequency modulated continuous wave reflectometer was developed for the first time on the HL-2A tokamak. The system utilizes a voltage controlled oscillator and an active multiplier for broadband coverage and detects as heterodyne mode. Three reflectometers have been installed and operated in extraordinary mode polarization on HL-2A to measure density profiles at low field side, covering the Q-band (33-50 GHz), V-band (50-75 GHz), and W-band (75-110 GHz). For density profile reconstruction from the phase shift of the probing wave, a corrected phase unwrapping method is introduced in this article. The effectiveness of the method is demonstrated. The density profile behavior of a fast plasma event is presented and it demonstrates the capability of the reflectometer. These diagnostics will be contributed to the routine density profile measurements and the plasma physics study on HL-2A.

18.
Rev Sci Instrum ; 84(11): 113501, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24289395

RESUMO

A 2D electron cyclotron emission imaging (ECEI) system has been developed for measurement of electron temperature fluctuations in the HL-2A tokamak. It is comprised of a front-end 24 channel heterodyne imaging array with a tunable RF range spanning 75-110 GHz, and a set of back-end ECEI electronics that together generate 24 × 8 = 192 channel images of the 2nd harmonic X-mode electron cyclotron emission from the HL-2A plasma. The simulated performance of the local oscillator (LO) optics and radio frequency (RF) optics is presented, together with the laboratory characterization results. The Gaussian beams from the LO optics are observed to properly cover the entire detector array. The ECE signals from the plasma are mixed with the LO signal in the array box, then delivered to the electronics system by low-loss microwave cables, and finally to the digitizers. The ECEI system can achieve temporal resolutions of ~µs, and spatial resolutions of 1 cm (radially) and 2 cm (poloidally).

19.
Phys Rev Lett ; 110(26): 265002, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848884

RESUMO

The dynamic features of the low-intermediate-high-(L-I-H) confinement transitions on HL-2A tokamak are presented. Here we report the discovery of two types of limit cycles (dubbed type-Y and type-J), which show opposite temporal ordering between the radial electric field and turbulence intensity. In type-Y, which appears first after an L-I transition, the turbulence grows first, followed by the localized electric field. In contrast, the electric field leads type-J. The turbulence-induced zonal flow and pressure-gradient-induced drift play essential roles in the two types of limit cycles, respectively. The condition of transition between types-Y and -J is studied in terms of the normalized radial electric field. An I-H transition is demonstrated to occur only from type-J.

20.
Phys Rev Lett ; 111(26): 265001, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24483800

RESUMO

Particle transport has been studied in the Tore Supra tokamak by using modulated ion cyclotron resonance heating to generate perturbations of density and temperature. For the first time, a reversal of the particle convective velocity and a strong increase in the turbulent particle flux have been clearly observed. When the mixed critical gradient ζc=R/L(T)+4(R/L(n))=22 is exceeded, the particle flux increases sharply and the convective velocity reverses from inward to outward. These observations are in agreement with quasilinear, gyrokinetic calculations. The critical gradient corresponds to a transition from an instability driven by the ion temperature gradient to the onset of another instability caused by trapped electrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...