Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 145: 185-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26688255

RESUMO

The bioavailability and toxicity of metals in soil are influenced by a variety of soil properties, and this principle should be recognized in establishing soil environmental quality criteria. In the present study, the uptake and toxicity of Cu to the earthworm Eisenia fetida in 15 Chinese soils with various soil properties were investigated, and regression models for predicting Cu toxicity across soils were developed. The results showed that earthworm survival and body weight change were less sensitive to Cu than earthworm cocoon production. The soil Cu-based median effective concentrations (EC50s) for earthworm cocoon production varied from 27.7 to 383.7 mg kg(-1) among 15 Chinese soils, representing approximately 14-fold variation. Soil cation exchange capacity and organic carbon content were identified as key factors controlling Cu toxicity to earthworm cocoon production, and simple and multiple regression models were developed for predicting Cu toxicity across soils. Tissue Cu-based EC50s for earthworm cocoon production were also calculated and varied from 15.5 to 62.5 mg kg(-1) (4-fold variation). Compared to the soil Cu-based EC50s for cocoon production, the tissue Cu-based EC50s had less variation among soils, indicating that metals in tissue were more relevant to toxicity than metals in soil and hence represented better measurements of bioavailability.


Assuntos
Cobre/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Animais , Disponibilidade Biológica , China , Cobre/farmacocinética , Oligoquetos/fisiologia , Poluentes do Solo/farmacocinética
2.
ACS Appl Mater Interfaces ; 7(33): 18292-9, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26234540

RESUMO

Two isomeric A-Ar-A-type small molecules of DPP2An(9,10) and DPP2An(2,6), were synthesized with two acceptor arms of diketopyrropyrroles (DPP) and a planar aryl hydrocarbon core of the different substituted anthracene (An), respectively. Their thermal stability, crystallinity, optoelectronic, and photovoltaic performances were investigated. Significantly red-shifted absorption profile and higher HOMO level were observed for the DPP2An(2,6) with 2,6-substituted anthracene relative to the DPP2An(9,10) with 9,10-substituted anthracene, as the former exhibited better planarity and a larger conjugate system. As a result, the solution-processing solar cells based on DPP2An(2,6) and PC71BM (w/w,1:1) displayed remarkably increased power conversion efficiency of 5.44% and short-circuit current density (Jsc) of 11.90 mA/cm(2) under 1% 1,8-diiodooctane additive. The PCE and Jsc values were 3.7 and 2.9 times those of the optimized DPP2An(9,10)-based cells, respectively. This work demonstrates that changing the linkage position of the anthracene core in the A-Ar-A-type SMs can strongly improve the photovoltaic properties in organic solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA