Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078907

RESUMO

Lipid metabolism plays a critical role in cancer metastasis. However, the mechanisms through which metastatic genes regulate lipid metabolism remain unclear. Here, we describe a new oncogenic-metabolic feedback loop between the epithelial-mesenchymal transition transcription factor ZEB2 and the key lipid enzyme ACSL4 (long-chain acyl-CoA synthetase 4), resulting in enhanced cellular lipid storage and fatty acid oxidation (FAO) to drive breast cancer metastasis. Functionally, depletion of ZEB2 or ACSL4 significantly reduced lipid droplets (LDs) abundance and cell migration. ACSL4 overexpression rescued the invasive capabilities of the ZEB2 knockdown cells, suggesting that ACSL4 is crucial for ZEB2-mediated metastasis. Mechanistically, ZEB2-activated ACSL4 expression by directly binding to the ACSL4 promoter. ACSL4 binds to and stabilizes ZEB2 by reducing ZEB2 ubiquitination. Notably, ACSL4 not only promotes the intracellular lipogenesis and LDs accumulation but also enhances FAO and adenosine triphosphate production by upregulating the FAO rate-limiting enzyme CPT1A (carnitine palmitoyltransferase 1 isoform A). Finally, we demonstrated that ACSL4 knockdown significantly reduced metastatic lung nodes in vivo. In conclusion, we reveal a novel positive regulatory loop between ZEB2 and ACSL4, which promotes LDs storage to meet the energy needs of breast cancer metastasis, and identify the ZEB2-ACSL4 signaling axis as an attractive therapeutic target for overcoming breast cancer metastasis.


Assuntos
Neoplasias da Mama , Melanoma , Neoplasias Cutâneas , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Retroalimentação , Metabolismo dos Lipídeos , Linhagem Celular Tumoral , Lipídeos , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
2.
Front Cardiovasc Med ; 10: 1253440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928757

RESUMO

Aims: Subclinical left ventricular (LV) dysfunction may occur in T2DM patients at the early asymptomatic stage, and LV reserve function is a sensitive index to detect subtle LV dysfunction. The purpose of our study is (1) to assess the LV reserve function using treadmill exercise stress echocardiography (ESE) in asymptomatic type 2 diabetes mellitus (T2DM) patients; (2) to explore the link of serum biological parameters and LV reserve function. Methods: This study included 84 patients with asymptomatic T2DM from September 2021 to July 2022 and 41 sex- and age-matched healthy controls during the corresponding period. All subjects completed treadmill ESE, LV systolic function-related parameters such as global longitudinal strain (GLS) and systolic strain rate (SRs), as well as diastolic function-related parameters such as E wave (E), early diastolic velocity (e'), E/e' ratio, early diastolic SR (SRe), and late diastolic SR (SRa) were compared at rest and immediately after exercise. The difference between LV functional parameters after treadmill exercise and its corresponding resting value was used to compute LV reserve function. In addition, the associations of LV reserve function and serum biological parameters were analyzed. Results: Patients with T2DM did not significantly vary from the controls in terms of alterations in LV diastolic reserve measures, the changes of LVGLS and SRs (ΔGLS: 2.19 ± 2.72% vs. 4.13 ± 2.79%, P < 0.001 and ΔSRs:0.78 ± 0.33 s-1 vs. 1.02 ± 0.28 s-1, P < 0.001) in the T2DM group were both lower than those in the control group. Glycated hemoglobin (HbA1c), N-terminal pro-brain natriuretic peptide (NTproBNP), waist circumference, and high-sensitive C-reactive protein (hsCRP) were identified as independent predictors of LV systolic reserve by stepwise multiple linear regression analysis. Conclusion: LV systolic reserve function, as measured by pre- and post-exercise differences in GLS and SRs were significantly impaired in patients with asymptomatic T2DM, whereas diastolic reserve remained normal during exercise and was comparable to that of the control group. This was different from previous findings. High levels of HbA1c, NTproBNP, hsCRP, and increasing waist circumference were independent predictors of LV systolic reserve.

3.
J Cancer Res Clin Oncol ; 149(14): 12881-12896, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37466793

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) with high incidence and mortality is one of the most common malignant cancers worldwide. Increasing evidence has reported that N6-methyladenosine (m6A) modification has been considered as a major contribution to the occurrence and development of tumors. METHOD: In our study, we comprehensively analyzed the connection between m6A regulatory factors and cancer stem cells (CSCs) of HCC to establish a clinical tool for predicting its outcome. First, we concluded that the expression level of m6A regulatory factors was related with the stemness of hepatocellular carcinoma. Subsequently, we gained a ten hub regulatory factors that were associated with prognosis of hepatocellular carcinoma by overall survival (OS) analysis using ICGC and TCGA datasets, and these regulatory factors included YTHDF1, IGF2BP1, METTL3, IGF2BP3, HNRNPA2B1, IGF2BP2, RBM15B, HNRNPC, RBMX, and LRPPR. Next, we found that these ten hub m6A regulatory factors were highly expressed in CSCs, and CSCs related pathways were also enriched by the gene set variation analysis (GSVA). Then, correlation, consensus clustering and PCA analysis were performed to reveal potential therapeutic benefits of HCC. Moreover, univariate Cox regression (UNICOX), LASSON and multivariate Cox regression (MULTICOX) analyses were adopted to establish HCC prognosis prediction signature. RESULTS: Four regulatory factors RBM15B, LRPPRC, IGF2BP1, and IGF2BP3 were picked as valuable prognostic indicators. CONCLUSION: In summary, these ten hub regulatory factors would be useful therapeutic targets for HCC treatment, and RBM15B/LRPPRC/IGF2BP1/IGF2BP3 prognostic indicators can be used to guide therapy for HCC patients.

4.
Adv Healthc Mater ; 12(26): e2300970, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37379527

RESUMO

Mesenchymal stem cell (MSC) therapies have been brought forward as a promising treatment modality for cutaneous wound healing. However, current approaches for stem cell delivery have many drawbacks, such as lack of targetability and cell loss, leading to poor efficacy of stem cell therapy. To overcome these problems, in the present study, an in situ cell electrospinning system is developed as an attractive approach for stem cell delivery. MSCs have a high cell viability of over 90% even with a high applied voltage of 15 kV post-cell electrospinning process. In addition, cell electrospinning does not show any negative effect on the surface marker expression and differentiation capacity of MSCs. In vivo studies demonstrate that in situ cell electrospinning treatment can promote cutaneous wound healing through direct deposition of bioactive fish gelatin fibers and MSCs onto wound sites, leading to a synergic therapeutic effect. The approach enhances extracellular matrix remodeling by increasing collagen deposition, promotes angiogenesis by increasing the expression of vascular endothelial growth factor (VEGF) and forming small blood vessels, and dramatically reduces the expression of interleukin-6 (IL-6) during wound healing. The use of in situ cell electrospinning system potentially provides a rapid, no touch, personalized treatment for cutaneous wound healing.


Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização , Colágeno/metabolismo , Pele
5.
J Oncol ; 2023: 4364654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844876

RESUMO

Background: Solute carrier (SLC) proteins play an important role in tumor metabolism. But SLC-associated genes' prognostic significance in hepatocellular carcinoma (HCC) remained elusive. We identified SLC-related factors and developed an SLC-related classifier to predict and improve HCC prognosis and treatment. Methods: From the TCGA database, corresponding clinical data and mRNA expression profiles of 371 HCC patients were acquired, and those of 231 tumor samples were derived from the ICGC database. Genes associated with clinical features were filtered using weighted gene correlation network analysis (WGCNA). Next, univariate LASSO Cox regression studies developed SLC risk profiles, with the ICGC cohort data being used in validation. Result: Univariate Cox regression analysis revealed that 31 SLC genes (P < 0.05) were related to HCC prognosis. 7 (SLC22A25, SLC2A2, SLC41A3, SLC44A1, SLC48A1, SLC4A2, and SLC9A3R1) of these genes were applied in developing a SLC gene prognosis model. Samples were classified into the low-andhigh-risk groups by the prognostic signature, with those in the high-risk group showing a significantly worse prognosis (P < 0.001 in the TCGA cohort and P=0.0068 in the ICGC cohort). ROC analysis validated the signature's prediction power. In addition, functional analyses showed enrichment of immune-related pathways and different immune status between the two risk groups. Conclusion: The 7-SLC-gene prognostic signature established in this study helped predict the prognosis, and was also correlated with the tumor immune status and infiltration of different immune cells in the tumor microenvironment. The current findings may provide important clinical indications for proposing a novel combination therapy consists of targeted anti-SLC therapy and immunotherapy for HCC patients.

6.
Cells ; 12(3)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766839

RESUMO

Human embryonic stem cells (hESCs) hold the potential to solve the problem of the shortage of functional hepatocytes in clinical applications and drug development. However, a large number of usable hepatocytes derived from hESCs cannot be effectively obtained due to the limited proliferation capacity. In this study, we found that enhancement of liver transcription factor C/EBPß during hepatic differentiation could not only significantly promote the expression of hepatic genes, such as albumin, alpha fetoprotein, and alpha-1 antitrypsin, but also dramatically reinforce proliferation-related phenotypes, including increasing the expression of proliferative genes, such as CDC25C, CDC45L, and PCNA, and the activation of cell cycle and DNA replication pathways. In addition, the analysis of CUT&Tag sequencing further revealed that C/EBPß is directly bound to the promoter region of proliferating genes to promote cell proliferation; this interaction between C/EBPß and DNA sequences of the promoters was verified by luciferase assay. On the contrary, the knockdown of C/EBPß could significantly inhibit the expression of the aforementioned proliferative genes. RNA transcriptome analysis and GSEA enrichment indicated that the E2F family was enriched, and the expression of E2F2 was changed with the overexpression or knockdown of C/EBPß. Moreover, the results of CUT&Tag sequencing showed that C/EBPß also directly bound the promoter of E2F2, regulating E2F2 expression. Interestingly, Co-IP analysis exhibited a direct binding between C/EBPß and E2F2 proteins, and this interaction between these two proteins was also verified in the LO2 cell line, a hepatic progenitor cell line. Thus, our results demonstrated that C/EBPß first initiated E2F2 expression and then coupled with E2F2 to regulate the expression of proliferative genes in hepatocytes during the differentiation of hESCs. Therefore, our findings open a new avenue to provide an in vitro efficient approach to generate proliferative hepatocytes to potentially meet the demands for use in cell-based therapeutics as well as for pharmaceutical and toxicological studies.


Assuntos
Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Hepatócitos/metabolismo , Proliferação de Células/genética , Regiões Promotoras Genéticas/genética , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo
7.
Pharm Res ; 40(4): 873-887, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35352281

RESUMO

Exosomes are extracellular vesicles secreted by cells with a particle size of 30-150 nm in diameter. Exosomes can be used as natural drug carriers. The treatment of cancer with drug-loaded exosomes is an area of high interest. This review introduces the composition, function, isolation and characterization of exosomes, and briefly describes the selection of exosome donor cells and methods for drug loading. Through studies on therapies with drug-loaded exosomes in gastric cancer, lung cancer, brain cancer and other cancers, the advantages and disadvantages of drug-loaded exosomes have been analyzed.


Assuntos
Neoplasias Encefálicas , Exossomos , Neoplasias Pulmonares , Humanos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico
8.
Front Immunol ; 14: 1258074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259452

RESUMO

Objectives: Normal commitment of the endoderm of the third pharyngeal pouch (3PP) is essential for the development and differentiation of the thymus. The aim of this study was to investigate the role of transcription factor HOXA3 in the development and differentiation of 3PP endoderm (3PPE) from human embryonic stem cells (hESCs). Methods: The 3PPE was differentiated from hESC-derived definitive endoderm (DE) by mimicking developmental queues with Activin A, WNT3A, retinoic acid and BMP4. The function of 3PPE was assessed by further differentiating into functional thymic epithelial cells (TECs). The effect of HOXA3 inhibition on cells of 3PPE was subsequently investigated. Results: A highly efficient approach for differentiating 3PPE cells was developed and these cells expressed 3PPE related genes HOXA3, SIX1, PAX9 as well as EpCAM. 3PPE cells had a strong potential to develop into TECs which expressed both cortical TEC markers K8 and CD205, and medullary TEC markers K5 and AIRE, and also promoted the development and maturation of T cells. More importantly, transcription factor HOXA3 not only regulated the differentiation of 3PPE, but also had a crucial role for the proliferation and migration of 3PPE cells. Our further investigation revealed that HOXA3 controlled the commitment and function of 3PPE through the regulation of Wnt signaling pathway by activating EPHB2. Conclusion: Our results demonstrated that HOXA3 functioned as the on-off switch to regulate the development of hESC-derived 3PPE through EPHB2-mediated Wnt pathway, and our findings will provide new insights into studying the development of 3PP and thymic organ in vitro and in vivo.


Assuntos
Proteínas de Homeodomínio , Células-Tronco Embrionárias Humanas , Via de Sinalização Wnt , Humanos , Endoderma , Genes Homeobox , Proteínas de Homeodomínio/genética , Fatores de Transcrição
9.
Cells ; 11(24)2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36552880

RESUMO

Hepatocytes exhibit a multi-polarized state under the in vivo physiological environment, however, human embryonic stem cell-derived hepatocytes (hEHs) rarely exhibit polarity features in a two-dimensional (2D) condition. Thus, we hypothesized whether the polarized differentiation might enhance the maturity and liver function of hEHs. In this study, we obtained the polarized hEHs (phEHs) by using 2D differentiation in conjunct with employing transwell-based polarized culture. Our results showed that phEHs directionally secreted albumin, urea and bile acids, and afterward, the apical membrane and blood-bile barrier (BBIB) were identified to form in phEHs. Moreover, phEHs exhibited a higher maturity and capacitity of cellular secretory and drug metabolism than those of non-phEHs. Through transcriptome analysis, it was found that the polarized differentiation induced obvious changes in gene expression profiles of cellular adhesion and membrane transport in hEHs. Our further investigation revealed that the activation of Hippo and AMPK signaling pathways made contributions to the regulation of function and cellular polarity in phEHs, further verifying that the liver function of hEHs was closely related with their polarization state. These results not only demonstrated that the polarized differentiation enhanced the maturity and liver function of hEHs, but also identified the molecular targets that regulated the polarization state of hEHs.


Assuntos
Proteínas Quinases Ativadas por AMP , Células-Tronco Embrionárias Humanas , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Diferenciação Celular , Transdução de Sinais
10.
Genes (Basel) ; 13(10)2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36292703

RESUMO

Various studies have shown that lysine acetyltransferase 2A (KAT2A), E2F transcription factor 1 (E2F1), and ubiquitin conjugating enzyme E2 C (UBE2C) genes regulated the proliferation and migration of tumor cells through regulating the cell cycle. However, there is a lack of in-depth and systematic research on their mechanisms of action. This study analyzed The Cancer Genome Atlas (TCGA) to screen potential candidate genes and the regulation network of KAT2A and E2F1 complex in pan-cancer. Quantitative real-time PCR (qRT-PCR) and Western blotting (WB), cell phenotype detection, immunofluorescence co-localization, chromatin immunoprecipitation assay (ChIP), and RNA-Seq techniques were used to explore the functional of a candidate gene, UBE2C. We found that the expression of these three genes was significantly higher in more than 10 tumor types compared to normal tissue. Moreover, UBE2C was mainly expressed in tumor cells, which highlighted the impacts of UBE2C as a specific therapeutic strategy. Moreover, KAT2A and E2F1 could promote cell proliferation and the migration of cancer cells by enhancing the expression of UBE2C. Mechanically, KAT2A was found to cooperate with E2F1 and be recruited by E2F1 to the UBE2C promoter for elevating the expression of UBE2C by increasing the acetylation level of H3K9.


Assuntos
Lisina Acetiltransferases , Neoplasias , Enzimas de Conjugação de Ubiquitina/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Fatores de Transcrição E2F , Neoplasias/genética
11.
J Zhejiang Univ Sci B ; 23(9): 732-746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111570

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are covalently closed single-stranded RNAs with multiple biological functions. CircRNA.0007127 is derived from the carbon catabolite repression 4-negative on TATA-less (CCR4-NOT) complex subunit 2 (CNOT2), which was found to regulate tumor cell apoptosis through caspase pathway. METHODS: Potential circRNA.0007127 target microRNAs (miRNAs) were analyzed by miRanda, TargetScan, and RNAhybrid software, and the miRNAs with binding sites for apoptosis-related genes were screened. The roles of circRNA.0007127 and its downstream target, microRNA (miR)|-513a-5p, were validated by quantitative real-time polymerase chain reaction (qPCR), flow cytometry, mitochondrial membrane potential, immunofluorescence, western blot, and caspase-8 (CASP8) protein activity in vitro in H2O2-induced K-562 cells. The circRNA.|0007127|‒|miR-513a-5p and CASP8|‒|miR-513a-5p interactions were verified by luciferase reporter assays. RESULTS: Silencing circRNA.0007127 decreased cell apoptosis by inhibiting CASP8 pathway activation in K-562 cells. Compared with the control group, the expression of CASP8 was reduced by 50% and the 43-kD fragment of CASP8 protein was significantly reduced (P≤0.05). The luciferase reporting assay showed that circRNA.0007127 combined with miR-513a-5p or CASP8, with extremely significant differences (P≤0.001). The overexpression of miR-513a-5p inhibited the gene expression level of CASP8 in a human myeloid leukemia cell model (75% change) and the level of a 43-kD fragment of CASP8 protein (P≤0.01). The rescue experiment showed that cotransfection with circRNA.0007127 small-interfering RNA (siRNA) and the miR-513a-5p inhibitor increased CASP8 gene expression and the apoptosis rate, suggesting that the miR-513a-5p inhibitor is a circRNA.0007127 siRNA antagonist. CONCLUSIONS: CircRNA.0007127 regulates K-562 cell apoptosis through the miR-513a-5p/CASP8 axis, which can serve as a novel powerful molecular target for K-562 cells.


Assuntos
Caspase 8 , MicroRNAs , RNA Circular , RNA Interferente Pequeno , Apoptose , Caspase 8/genética , Caspase 8/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Células K562 , MicroRNAs/genética , RNA Circular/genética , RNA Interferente Pequeno/genética , Proteínas Repressoras
12.
Stem Cell Res Ther ; 13(1): 473, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104733

RESUMO

BACKGROUND: More than 40% patients with diffuse large B cell lymphoma (DLBCL) experienced relapse or refractory (R/R) lymphoma after the standard first R-CHOP therapy. IL-6 was reportedly associated with chemotherapy resistance of rituximab. Further, mesenchymal stem cells (MSCs) are known as the potential cell vehicle for their tropism toward tumor. A MSCs-based tandem diabody for treating DLBCL is currently lacking. METHODS: We constructed a tandem diabody (Tandab(IL-6/CD20)) with modified umbilical cord MSCs (UCMSCs) and designed a cell-based Tandab releasing system. Western blot, qPCR and immunofluorescence were used to confirm the construction and expression of lentivirus-infected UCMSCs. The vitality, apoptosis and homing abilities of UCMSCs were examined via CCK-8 assay, apoptosis, wound healing and migration analysis. Cell binding assay was used to demonstrate the targeting property of Tandab binding to CD20-positive DLBCL cells. Furthermore, we evaluated the viability of SU-DHL-2 and SU-DHL-4 by using CCK-8 and EDU assay after the treatment of UCMSCs-Tandab(IL-6/CD20). RESULTS: Tandab protein peaked at 6273 ± 487 pg/ml in the medium on day 7 after cell culture. The proliferation and homing ability of UCMSCs did not attenuate after genetically modification. Immunofluorescence images indicated the Tandab protein bound to the lymphoma cells. UCMSCs-Tandab(IL-6/CD20) inhibited the growth of SU-DHL-2 or SU-DHL-4 cells in vitro. CONCLUSIONS: UCMSCs-Tandab(IL-6/CD20), which bound with both tumor-associated surface antigens and pro-tumor cytokines in tumor microenvironment, might serve as a potential treatment for DLBCL, evidenced by inhibiting the growth of SU-DHL-2 or SU-DHL-4 cells.


Assuntos
Linfoma Difuso de Grandes Células B , Células-Tronco Mesenquimais , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/terapia , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral , Cordão Umbilical
13.
Stem Cell Res Ther ; 13(1): 282, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765115

RESUMO

BACKGROUND: Hematopoietic stem cells are able to self-renew and differentiate into all blood cell lineages. Hematopoietic stem cell transplantation is a mainstay of life-saving therapy for hematopoietic malignancies and hypoproliferative disorders. In vitro hematopoietic differentiation of human pluripotent stem cells (hPSCs) is a promising approach for modeling hematopoietic development and cell replacement therapies. Although using hPSCs to derive hematopoietic progenitor cells has achieved some successes in the past, differentiation from hPSCs to produce all hematopoietic cells which can provide robust long-term multilineage engraftment is still very difficult. Here, we reported a novel culture system for hematopoietic differentiation from human embryonic stem cells (hESCs) with optimal cytokines combinations under hypoxia condition. METHODS: In vitro production of T lineage hematopoietic stem/progenitor cells from hESCs by using hypoxia differentiation system, the effects and the potential mechanism of hypoxia promoting T lineage hematopoiesis were investigated by RT-qPCR validation, cell cycle assay and flow cytometry analysis. RESULTS: Using our differentiation system, almost 80% CD45+ cells generated from hESCs were hematopoietic cells and particularly could be further induced into CD3+TCRαß+ T cells in vitro. We detected more CD34+CD144+ hematopoietic endothelial progenitors (HEPs) induced from hESCs than those in normoxia conditions, and the early HEPs-related gene DLL4 was upregulated by enhancing the hypoxia signaling via potential HIF-1α/NOTCH1/DLL4 axis to enhance arterial feature, thus drove T lineage during the hematopoiesis. Strikingly, hematopoietic cells generated in our system exhibited the potential for all multilineage reconstruction including lymphoid, myeloid and erythroid lineages in vivo by transplantation assay. CONCLUSION: Our results demonstrated that hypoxia plays an important role in T lineage hematopoiesis by promoting the expression of arterial endothelial gene DLL4 and upregulation of NOTCH1 through the activation of the HIF-1α signaling pathway. These results provide a significant approach for in vitro and in vivo production of fully functional hematopoietic stem/progenitor cells from hESCs.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Hipóxia/metabolismo , Células-Tronco Pluripotentes/metabolismo
14.
Stem Cell Res Ther ; 13(1): 218, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619172

RESUMO

BACKGROUND: Human pluripotent stem cells (hPSCs) have great potential in applications for regenerative medicine and drug development. However, 3D suspension culture systems for clinical-grade hPSC large-scale production have been a major challenge. Accumulating evidence has demonstrated that the addition of dextran sulfate (DS) could prevent excessive adhesion of hPSCs from forming larger aggregates in 3D suspension culture. However, the signaling and molecular mechanisms underlying this phenomenon remain elusive. METHODS: By using a cell aggregate culture assay and separating big and small aggregates in suspension culture systems, the potential mechanism and downstream target genes of DS were investigated by mRNA sequence analysis, qRT-PCR validation, colony formation assay, and interference assay. RESULTS: Since cellular adhesion molecules (CAMs) play important roles in hPSC adhesion and aggregation, we assumed that DS might prevent excess adhesion through affecting the expression of CAMs in hPSCs. As expected, after DS treatment, we found that the expression of CAMs was significantly down-regulated, especially E-cadherin (E-cad) and intercellular adhesion molecule 1 (ICAM1), two highly expressed CAMs in hPSCs. The role of E-cad in the adhesion of hPSCs has been widely investigated, but the function of ICAM1 in hPSCs is hardly understood. In the present study, we demonstrated that ICAM1 exhibited the capacity to promote the adhesion in hPSCs, and this adhesion was suppressed by the treatment with DS. Furthermore, transcriptomic analysis of RNA-seq revealed that DS treatment up-regulated genes related to Wnt signaling resulting in the activation of Wnt signaling in which SLUG, TWIST, and MMP3/7 were highly expressed, and further inhibited the expression of E-cad. CONCLUSION: Our results demonstrated that DS played an important role in controlling the size of hPSC aggregates in 3D suspension culture by inhibiting the expression of ICAM1 coupled with the down-regulation of E-cad through the activation of the Wnt signaling pathway. These results represent a significant step toward developing the expansion of hPSCs under 3D suspension condition in large-scale cultures.


Assuntos
Células-Tronco Pluripotentes , Via de Sinalização Wnt , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular , Sulfato de Dextrana , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células-Tronco Pluripotentes/metabolismo
15.
J Nanobiotechnology ; 19(1): 437, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930304

RESUMO

BACKGROUND: Exosomes secreted from stem cells exerted salutary effects on the fibrotic liver. Herein, the roles of exosomes derived from human embryonic stem cell (hESC) in anti-fibrosis were extensively investigated. Compared with two-dimensional (2D) culture, the clinical and biological relevance of three-dimensional (3D) cell spheroids were greater because of their higher regeneration potential since they behave more like cells in vivo. In our study, exosomes derived from 3D human embryonic stem cells (hESC) spheroids and the monolayer (2D) hESCs were collected and compared the therapeutic potential for fibrotic liver in vitro and in vivo. RESULTS: In vitro, PKH26 labeled-hESC-Exosomes were shown to be internalized and integrated into TGFß-activated-LX2 cells, and reduced the expression of profibrogenic markers, thereby regulating cellular phenotypes. TPEF imaging indicated that PKH26-labeled-3D-hESC-Exsomes possessed an enhanced capacity to accumulate in the livers and exhibited more dramatic therapeutic potential in the injured livers of fibrosis mouse model. 3D-hESC-Exosomes decreased profibrogenic markers and liver injury markers, and improved the level of liver functioning proteins, eventually restoring liver function of fibrosis mice. miRNA array revealed a significant enrichment of miR-6766-3p in 3D-hESC-Exosomes, moreover, bioinformatics and dual luciferase reporter assay identified and confirmed the TGFßRII gene as the target of miR-6766-3p. Furthermore, the delivery of miR-6766-3p into activated-LX2 cells decreased cell proliferation, chemotaxis and profibrotic effects, and further investigation demonstrated that the expression of target gene TGFßRII and its downstream SMADs proteins, especially phosphorylated protein p-SMAD2/3 was also notably down-regulated by miR-6766-3p. These findings unveiled that miR-6766-3p in 3D-hESC-Exosomes inactivated SMADs signaling by inhibiting TGFßRII expression, consequently attenuating stellate cell activation and suppressing liver fibrosis. CONCLUSIONS: Our results showed that miR-6766-3p in the 3D-hESC-Exosomes inactivates smads signaling by restraining TGFßRII expression, attenuated LX2 cell activation and suppressed liver fibrosis, suggesting that 3D-hESC-Exosome enriched-miR-6766-3p is a novel anti-fibrotic therapeutics for treating chronic liver disease. These results also proposed a significant strategy that 3D-Exo could be used as natural nanoparticles to rescue liver injury via delivering antifibrotic miR-6766-3p.


Assuntos
Exossomos/metabolismo , Cirrose Hepática/terapia , MicroRNAs/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Proteínas Smad/metabolismo , Animais , Antagomirs/metabolismo , Técnicas de Cultura de Células em Três Dimensões , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Exossomos/química , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia
16.
Cell Prolif ; 54(9): e13112, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34390064

RESUMO

OBJECTIVES: For clinical applications of cell-based therapies, a large quantity of human pluripotent stem cells (hPSCs) produced in standardized and scalable culture processes is required. Currently, microcarrier-free suspension culture shows potential for large-scale expansion of hPSCs; however, hPSCs tend to aggregate during culturing leading to a negative effect on cell yield. To overcome this problem, we developed a novel protocol to effectively control the sizes of cell aggregates and enhance the cell proliferation during the expansion of hPSCs in suspension. MATERIALS AND METHODS: hPSCs were expanded in suspension culture supplemented with polyvinyl alcohol (PVA) and dextran sulphate (DS), and 3D suspension culture of hPSCs formed cell aggregates under static or dynamic conditions. The sizes of cell aggregates and the cell proliferation as well as the pluripotency of hPSCs after expansion were assessed using cell counting, size analysis, real-time quantitative polymerase chain reaction, flow cytometry analysis, immunofluorescence staining, embryoid body formation, teratoma formation and transcriptome sequencing. RESULTS: Our results demonstrated that the addition of DS alone effectively prevented hPSC aggregation, while the addition of PVA significantly enhanced hPSC proliferation. The combination of PVA and DS not only promoted cell proliferation of hPSCs but also produced uniform and size-controlled cell aggregates. Moreover, hPSCs treated with PVA, or DS or a combination, maintained the pluripotency and were capable of differentiating into all three germ layers. mRNA-seq analysis demonstrated that the combination of PVA and DS significantly promoted hPSC proliferation and prevented cell aggregation through improving energy metabolism-related processes, regulating cell growth, cell proliferation and cell division, as well as reducing the adhesion among hPSC aggregates by affecting expression of genes related to cell adhesion. CONCLUSIONS: Our results represent a significant step towards developing a simple and robust approach for the expansion of hPSCs in large scale.


Assuntos
Agregação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sulfato de Dextrana/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Álcool de Polivinil/farmacologia , Animais , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Camundongos
17.
Biomater Sci ; 9(18): 6064-6085, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34136892

RESUMO

Hepatocellular carcinoma (HCC), as a well-vascularized tumor, has attracted increasing attention in antiangiogenic therapies. Notably, emerging studies reveal that the long-term administration of antiangiogenic drugs induces hypoxia in tumors. Pericytes, which play a vital role in vascular stabilization and maturation, have been documented to be associated with antiangiogenic drug-induced tumor hypoxia. However, the role of antiangiogenic agents in regulating pericyte behavior still remains elusive. In this study, by using immunostaining analysis, we first demonstrated that tumors obtained from HCC patients were highly angiogenic, in which vessels were irregularly covered by pericytes. Therefore, we established a new 3D model of tumor-driven angiogenesis by culturing endothelial cells, pericytes, cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) with microcarriers in order to investigate the effects and mechanisms exerted by antiangiogenic agents on pericyte recruitment during tumor angiogenesis. Interestingly, microcarriers, as supporting matrices, enhanced the interactions between tumor cells and the extracellular matrix (ECM), promoted malignancy of tumor cells and increased tumor angiogenesis within the 3D model, as determined by qRT-PCR and immunostaining. More importantly, we showed that zoledronic acid (ZA) reversed the inhibited pericyte recruitment, which was induced by sorafenib (Sora) treatment, through fostering the expression and activation of ErbB1/ErbB2 and PDGFR-ß in pericytes, in both an in vitro 3D model and an in vivo xenograft HCC mouse model. Hence, our model provides a more pathophysiologically relevant platform for the assessment of therapeutic effects of antiangiogenic compounds and identification of novel pharmacological targets, which might efficiently improve the benefits of antiangiogenic treatment for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Células Endoteliais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Neovascularização Patológica/tratamento farmacológico , Pericitos
19.
Front Cell Dev Biol ; 9: 711149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977001

RESUMO

Integrin ß1 (ITGB1), which acts as an extracellular matrix (ECM) receptor, has gained increasing attention as a therapeutic target for the treatment of hepatocellular carcinoma (HCC). However, the underpinning mechanism of how ITGB1 drives HCC progression remains elusive. In this study, we first found that ITGB1 expression was significantly higher in HCC tissues than in normal controls by bioinformatics analysis. Furthermore, bioinformatics analysis revealed that paxillin (PXN) and 14-3-3 protein zeta (YWHAZ) are the molecules participating in ITGB1-regulated HCC tumor cell cycle progression. Indeed, immunohistochemistry (IHC) revealed that ITGB1, paxillin, and YWHAZ were strongly upregulated in paired HCC tissue compared with adjacent normal tissues. Notably, the inhibition of ITGB1 expression by small interfering RNA (siRNA) resulted in the downregulated expression of PXN and YWHAZ in primary HCC cells, as assessed by western blot and immunostaining. In addition, ITGB1 knockdown markedly impaired the aggressive behavior of HCC tumor cells and delayed cell cycle progression as determined by cell migration assay, drug-resistance analysis, colony formation assay, quantitative real-time polymerase chain reaction (qRT-PCR), and cell cycle analysis as well as cell viability measurements. More importantly, we proved that xenograft ITGB1high tumors grew more rapidly than ITGB1low tumors. Altogether, our study showed that the ITGB1/PXN/YWHAZ/protein kinase B (AKT) axis enhances HCC progression by accelerating the cell cycle process, which offers a promising approach to halt HCC tumor growth.

20.
Int J Nanomedicine ; 15: 6373-6383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904686

RESUMO

BACKGROUND: The treatment of tendon injuries remains a challenging problem in clinical due to their slow and insufficient natural healing process. Scaffold-based tissue engineering provides a promising strategy to facilitate tendon healing and regeneration. However, many tissue engineering scaffolds have failed due to their poor and unstable mechanical properties. To address this, we fabricated nanofibrous polycaprolactone/methacrylated poly(trimethylene carbonate) (PCL/PTMC-MA) composite scaffolds via electrospinning. MATERIALS AND METHODS: PTMC-MA was characterized by nuclear magnetic resonance. Fiber morphology of composite scaffolds was evaluated using scanning electron microscopy. The monotonic tensile test was performed for determining the mechanical properties of composite scaffolds. Cell viability and collagen deposition were assessed via PrestoBlue assay and enzyme-linked immunosorbent assay, respectively. RESULTS: These PCL/PTMC-MA composite scaffolds had an increase in mechanical properties as PTMC-MA content increase. After photo-crosslinking, they showed further enhanced mechanical properties including creep resistance, which was superior to pure PCL scaffolds. It is worth noting that photo-crosslinked PCL/PTMC-MA (1:3) composite scaffolds had a Young's modulus of 31.13 ± 1.30 MPa and Max stress at break of 23.80 ± 3.44 MPa that were comparable with the mechanical properties of native tendon (Young's modulus 20-1200 MPa, max stress at break 5-100 MPa). In addition, biological experiments demonstrated that PCL/PTMC-MA composite scaffolds were biocompatible for cell adhesion, proliferation, and differentiation.


Assuntos
Células-Tronco Mesenquimais/citologia , Nanofibras/química , Fotoquímica/métodos , Alicerces Teciduais/química , Animais , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Colágeno/metabolismo , Dioxanos/química , Teste de Materiais , Camundongos Endogâmicos C57BL , Poliésteres/química , Polímeros/química , Regeneração , Tendões/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...