Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 246: 120711, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844339

RESUMO

The accumulation of volatile fatty acids (VFAs) in anaerobic digestion (AD) systems resulting from food waste overload poses a risk of system collapse. However, limited understanding exists regarding the inhibitory mechanisms and effective strategies to address VFAs-induced stress. This study found that accumulated VFAs exert reactive oxygen species (ROS) stress on indigenous microbiota, particularly impacting methanogens due to their lower antioxidant capability compared to bacteria, which is supposed to be the primary reason for methanogenesis failure. To enhance the VFAs-stressed AD process, microbiome re-assembly using customized propionate-degrading consortia and bioaugmentation with concentrated digestate were implemented. Microbiome re-assembly demonstrated superior efficiency, yielding an average methane yield of 563.6±159.8 mL/L·d and reducing VFAs to undetectable levels for a minimum of 80 days. This strategy improved the abundance of Syntrophomonas, Syntrophobacter and Methanothrix, alleviating ROS stress. Conversely, microbial community in reactor with other strategy experienced an escalating intracellular damage, as indicated by the increase of ROS generation-related genes. This study fills knowledge gaps in stress-related metabolic mechanisms of anaerobic microbiomes exposed to VFAs and microbiome re-assembly to boost methanogenesis process.


Assuntos
Microbiota , Eliminação de Resíduos , Anaerobiose , Espécies Reativas de Oxigênio , Alimentos , Reatores Biológicos/microbiologia , Ácidos Graxos Voláteis/metabolismo , Metano/metabolismo
2.
Waste Manag ; 149: 156-167, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35738145

RESUMO

The establishment of biocover systems is an emerging methodology in reducing methane (CH4) emissions from landfills. This study investigated the performance of three biocover systems with different designs (biowindow and passively and actively loaded biofilters) in mitigating CH4 emissions from three landfills in Denmark. A series of field tests were carried out to evaluate the functionality of each system, and total CH4 emissions from relevant landfill sections or the entire landfill were measured before and after biocover implementation. Surface CH4 concentration screening and local CH4 fluxes showed generally low emissions from the biowindow/biofilters (mostly < 5 g CH4 m-2 d-1), although some hotspots were identified on two actively loaded biofilters. One passively loaded biofilter exhibited high CH4 emissions, mainly due to gas overloading into the system. Gas concentration profiles measured at different locations suggested uneven gas distribution in the biofilters, and significant CH4 oxidation occurred in both the gas distribution layer (when oxygen was fed into the system) and the CH4 oxidation layer. High CH4 oxidation efficiencies of above 95% were found in all systems except for one biofilter (55%). Whole-site emission measurements showed CH4 reduction efficiencies between 29 and 72% after implementing biocover systems at the three landfills, suggesting that they were efficient in reducing CH4 emissions. The most challenging task for the passively loaded biocover systems was to control gas flow and secure homogenous gas distribution, while for actively loaded biocovers, it might be more important to eliminate emission hotspots for better functionality.


Assuntos
Poluentes Atmosféricos , Eliminação de Resíduos , Poluentes Atmosféricos/análise , Dinamarca , Metano/análise , Oxirredução , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos
3.
Sci Total Environ ; 839: 155996, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35588837

RESUMO

The treatment and disposal of sewage sludge (SL) has long been a challenging task in China. Open windrow composting, coupled with mechanical turning, is preferred in small cities and rural areas, due to low costs and ease of operation. However, the emission of odorous volatile organic compounds (VOCs) from open composting windrows, as well as related health risks, has aroused strong protests from surrounding populations. This study investigated VOC emissions (including hydrogen sulphide) from five open SL composting windrows at a single site, before, during and after turning operations, and across different seasons. As expected, the highest VOC concentration (6676 µg m-3) was measured while turning the windrows, whilst an additional emission peak was observed at all windrows at different times after turning, which was determined by the raw material mixing ratio (SL: woodchips), as well as ambient and windrow temperatures. In general, higher VOCs emissions and odour concentrations were measured in summer, and odour pollution was mainly caused by sulphur and oxygenated compounds, due to their high odour activity values (OAVs). Methyl mercaptan, dimethyl disulphide, dimethyl sulphide, diethyl sulphide, acetaldehyde and ethyl acetate were identified as the odour pollution indicators for the composting facility. The results from a health risk assessment showed that acetaldehyde was the most hazardous compound, with both non-carcinogenic and carcinogenic risks exceeding acceptable levels. The carcinogenic risks of benzene and naphthalene were also above acceptable levels; however, their risks were insignificant at the studied site due to the low concentrations.


Assuntos
Compostagem , Compostos Orgânicos Voláteis , Acetaldeído , Odorantes/análise , Esgotos
4.
Waste Manag ; 139: 269-278, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34995854

RESUMO

Globally, landfills are an important source of anthropogenic methane emissions. Regulations require landfill gas be managed to reduce emissions, and some landfills have therefore installed gas collection systems to recover energy and mitigate methane emissions. However, the efficiency of such systems is seldom evaluated. This paper presents the gas collection efficiencies of 23 Danish landfills and suggests how these values could be used to regulate landfill methane emissions in Denmark. Methane emissions from all sites were measured using the tracer gas dispersion method, and gas collection efficiencies were calculated using the ratio of the methane collection rate to the sum of the collection and emission (and oxidation) rates. Gas collection efficiencies ranged between 13 and 86% with an average of 50% - a value lower than for Swedish (58%), UK (64%) and US (63%) landfills. Possible reasons for the inefficiency of gas collection systems in Denmark include shallow gas collection pipes, leakage from installations (e.g. leachate wells, gas engines), low gas recovery due to minimal gas production or a lack of gas collection in active waste cells. It is suggested to use gas collection efficiency to regulate landfills and help them reach a particular methane mitigation goal. Gas collection efficiency that falls below the target mitigation rate would in turn trigger actions to reduce landfill methane emissions. At sites where the quality of the collected gas is too low to operate a gas engine, the installed gas collection system could be retrofitted to a biocover system designed for methane oxidation.


Assuntos
Poluentes Atmosféricos , Eliminação de Resíduos , Poluentes Atmosféricos/análise , Dinamarca , Monitoramento Ambiental , Metano/análise , Instalações de Eliminação de Resíduos
5.
Waste Manag ; 126: 367-376, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33813314

RESUMO

Biocover systems are a cost-effective technology utilised to mitigate methane (CH4) and trace gas emissions from landfills. A full-scale biofilter system was constructed at Glatved landfill, Denmark, consisting of three biofilters with a total area of 3950 m2. Landfill gas collected mainly from shredder waste cells was mixed with ambient air and fed actively into the biofilter, resulting in an average load of 60-75 g m-2 d-1 for CH4 and 0.15-0.21 g m-2 d-1 for trace gases (e.g., aromatics, chlorofluorocarbons (CFCs), aliphatic hydrocarbons). The initial CH4 surface screening showed uneven gas distribution into the system, and elevated surface concentrations were observed close to the gas inlet. Both positive and negative CH4 fluxes, ranging from -0.36 to 4.25 g m-2 d-1, were measured across the surface of the biofilter. Total trace gas emissions were between -0.005 and 0.042 g m-2 d-1, and the emission flux of individual compounds were generally small (10-8 to 10-3 g m-2 d-1). Vertical gas concentration profiles showed that the oxidation of CH4 and easily degradable trace compounds such as aromatics and aliphatic hydrocarbons happened in the aerobic zones, while CFCs were degraded in the anaerobic zone inside the compost layer. In addition, oxidation/degradation of CH4 and trace gases also occurred in the gas distribution layer, which contributed significantly to the overall mitigation efficiency of the biofilter system. Overall, the biofilter system showed mitigation efficiencies of nearly 100% for both CH4 and trace gases, and it might have the potential to work under higher loads.


Assuntos
Poluentes Atmosféricos , Eliminação de Resíduos , Poluentes Atmosféricos/análise , Dinamarca , Gases/análise , Metano/análise , Instalações de Eliminação de Resíduos
6.
Waste Manag ; 122: 113-123, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33503529

RESUMO

In 1997, the landfilling of biodegradable waste was banned in Denmark, and currently Danish landfills receive mostly non-combustible waste with a low-organic content. This study aimed to investigate trace gas composition in landfill gas (LFG) at modern Danish landfills. Landfill gas samples were taken from waste cells containing shredder, mixed and aged waste from four Danish landfills. The highest trace gas concentrations were found in shredder waste cells (average concentration of 103 mg m-3), which were comparable with conventional municipal solid waste landfills receiving organic waste. Aliphatic hydrocarbons and aromatics were dominant in the shredder waste cells, most likely released through direct volatilisation from disposed waste products. Abundant oxygenated compounds were found in the shredder waste cell in one of the landfills, thereby indicating a higher level of organic fraction biodegradation. Benzene, toluene, ethylbenzene and xylenes (BTEXs) were measured in high concentrations in all shredder waste cells, contributing to more than 75% of total aromatics. Considerably lower concentrations of trace gases were measured in the mixed and aged waste cells, which were dominated by hydrogen sulphide and several aliphatic hydrocarbons. A constant concentration ratio was established between aliphatic hydrocarbons together with aromatics and methane in shredder waste cells, which was then used in an LFG generation model to estimate trace gas production. The production rates of BTEXs from two landfills were estimated at 272 and 73 kg yr-1 in 2020, which were not considered to pose a significant risk to the environment or to human health.


Assuntos
Eliminação de Resíduos , Instalações de Eliminação de Resíduos , Idoso , Dinamarca , Gases/análise , Humanos , Metano/análise , Resíduos Sólidos
7.
Sci Total Environ ; 768: 144692, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33434801

RESUMO

The thermal desorption (TD) technique has long suffered from the 'one-shot' problem, whereby the entire sample is consumed in a single analysis, and thus no sample remains for repeated analysis. Recent developments in TD equipment allow for the quantitative re-collection of split samples during thermal desorption, which can be utilised for archiving or immediate analysis. However, the performance of TD systems for re-collecting different volatile organic compounds (VOCs) has rarely been demonstrated. This study provides a systematic investigation into the re-collection efficiency for over 90 VOCs on a TD unit under different conditions. An analytical method was developed based on multi-sorbent tubes and TD-GC/MS, which could quantitatively measure 92 VOCs with good sensitivity (method detection limit between 0.01 and 2 ng) and precision (< 10%). Satisfactory re-collection performance (recoveries within 100% ± 20%) was found for over 70 compounds under different split modes for multiple times, and the single (outlet) split mode was preferred in this regard, in order to avoid significant uncertainties in the results. Thermal labile, polar or reactive compounds such as alcohols and ketones were generally not compatible with re-collection, as they were either lost due to thermal decomposition or formed as system artefacts. In addition, bromochloromethane should not be used as an internal standard when performing sample re-collection, since it will experience significant loss during repeated analysis and lead to overestimation for corresponding compounds. Finally, the re-collection was tested with low-concentration field samples to resolve the unexpected water problem in analysis. Although higher uncertainties were expected in the re-collected samples, the results provided good information on overall concentration variations at the sampling site, thereby instilling confidence in the results obtained from the primary analysis.

8.
Waste Manag ; 119: 39-62, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039980

RESUMO

Trace gas emissions from municipal solid waste (MSW) landfills have received increasing attention in recent years. This paper reviews literature published between 1983 and 2019, focusing on (i) the origin and fate of trace gas in MSW landfills, (ii) sampling and analytical techniques, (iii) quantitative emission measurement techniques, (iv) concentration and surface emission rates of common trace compounds at different landfill units and (v) the environmental and health concerns associated with trace gas emissions from MSW landfills. Trace gases can be produced from waste degradation, direct volatilisation of chemicals in waste products or from conversions/reactions between other compounds. Different chemical groups dominate the different waste decomposition stages. In general, organic sulphur compounds and oxygenated compounds are connected with fresh waste, while abundant hydrogen sulphide, aromatics and aliphatic hydrocarbons are usually found during the methane fermentation stage. Selection of different sampling, analytical and emission rate measurement techniques might generate different results when quantifying trace gas emission from landfills, and validation tests are needed to evaluate the reliability of current methods. The concentrations of trace gases and their surface emission rates vary largely from site to site, and fresh waste dumping areas and uncovered waste surfaces are the most important fugitive emission sources. The adverse effects of trace gas emission are not fully understood, and more emission data are required in future studies to assess quantitatively their environmental impacts as well as health risks.


Assuntos
Poluentes Atmosféricos , Eliminação de Resíduos , Poluentes Atmosféricos/análise , Gases , Metano/análise , Reprodutibilidade dos Testes , Resíduos Sólidos , Instalações de Eliminação de Resíduos
9.
Environ Sci Pollut Res Int ; 24(22): 18383-18391, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28639025

RESUMO

Transfer station, incineration plant, and landfill site made up the major parts of municipal solid waste disposal system of S city in Eastern China. Characteristics of volatile compounds (VCs) and odor pollution of each facility were investigated from a systematic perspective. Also major index related to odor pollution, i.e., species and concentration of VCs, olfactory odor concentration, and theoretic odor concentration, was quantified. Oxygenated compounds and hydrocarbons were the most abundant VCs in the three facilities. Different chemical species were quantified, and the following average concentrations were obtained: transfer station, 54 VCs, 2472.47 µg/m3; incineration plant, 75 VCs, 33,129.25 µg/m3; and landfill site, 71 VCs, 1694.33 µg/m3. Furthermore, the average olfactory odor concentrations were 20,388.80; 50,677.50; and 4951.17, respectively. The highest odor nuisance was detected in the waste tipping port of the incineration plant. A positive correlation between the olfactory and chemical odor concentrations was found with R 2 = 0.918 (n = 15, P < 0.01). The result shows odor pollution risk transfer from landfill to incineration plant when adopting thermal technology to deal with the non-source-separated waste. Strong attention thus needs to be paid on the enclosed systems in incineration plant to avoid any accidental odor emission.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Odorantes/análise , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , China , Cidades , Incineração , Instalações de Eliminação de Resíduos
10.
J Hazard Mater ; 327: 35-43, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28038430

RESUMO

Degradation of mechanically sorted organic fraction (MSOF) of municipal solid waste in composting facilities is among the major contributors of volatile compounds (VCs) generation and emission, causes nuisance problems and health risks on site as well as in the vicinages. The aim of current study was to determine the seasonal (summer and winter) variation and human health risk assessment of VCs in the ambient air of different processing units in MSOF at composting plant in China. Average concentration of VCs was 58.50 and 138.03mg/m3 in summer and winter respectively. Oxygenated compounds were found to be the highest concentration (46.78-91.89mg/m3) with ethyl alcohol as the major specie (43.90-85.31mg/m3) in the two seasons respectively. Nevertheless, individual non-carcinogenic (Hazard relation i.e HR<1) and carcinogenic risk (CR<1.0E-04) of the quantified VCs were within acceptable limit except naphthalene at biofilter unit. In addition, cumulative non-carcinogenic risk exceeded from the threshold limit both in summers and winters in all units except at biofilter unit during winter. Furthermore cumulative carcinogenic risk also exceeded at same unit during the summer season. Therefore special attention should be made to minimize cumulative non-carcinogenic and carcinogenic risk as people are well exposed to mixture of compounds, not to individual.


Assuntos
Compostagem , Eliminação de Resíduos , Resíduos Sólidos/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade , Ar/análise , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Algoritmos , Carcinógenos/toxicidade , China , Monitoramento Ambiental , Humanos , Naftalenos/toxicidade , Medição de Risco , Estações do Ano
11.
J Air Waste Manag Assoc ; 62(3): 278-86, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22482286

RESUMO

A novel biocover with passive air diffusion system (PADS) was designed in this study. Its effect on landfill gas components in the macrocosms of simulated biocover systems was also investigated. The results show that O2 concentration increased in the whole profile of the macrocosms equipped with PADS. When simulated landfill gas (SLFG) flow rate was no more than 40 mL min(-1), the methane oxidation rate was 100%. The highest CH4 oxidation capacity reached to 31.34 mol m(-3) day(-1). Molecular microbiology analysis of the soil samples taken from the above macrocosm showed that the growth of type I methanotrophs was enhanced, attributable to enhanced air diffusion and distribution, whereas the microbial diversity and population density of type II methanotrophs were not so affected, as evidenced by the absence of any difference between the biocover equipped with PADS and that of the control. According to a phylogenic analysis, Methylobacter Methylosarcinafor type I, and Methylocystis, Methylosinus for type II, were the most prevalent species in the macrocosm with PADS.


Assuntos
Poluentes Atmosféricos/química , Metano/química , Methylococcaceae/metabolismo , Methylocystaceae/metabolismo , Microbiologia do Solo , Ar , Biodegradação Ambiental , Difusão , Humanos , Metano/biossíntese , Methylococcaceae/genética , Methylocystaceae/genética , Oxirredução , Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA