Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Sport Sci ; 22(8): 1240-1249, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34092191

RESUMO

This study investigated the effect of beta-alanine supplementation on short-duration sprints and final 4-km simulated uphill cycling time-trial performance during a comprehensive and novel exercise protocol representative of the demands of road-race cycling, and determined if changes were related to increases in muscle carnosine content. Seventeen cyclists (age 38 ± 9 y, height 1.76 ± 0.07 m, body mass 71.4 ± 8.8 kg, V̇O2max 52.4 ± 8.3 ml·kg-1·min-1) participated in this placebo-controlled, double-blind study. Cyclists undertook a prolonged intermittent cycling protocol lasting 125 min, with a 10-s sprint every 20 min, finishing with a 4-km time-trial at 5% simulated incline. Participants completed two familiarization sessions, and two main sessions, one pre-supplementation and one post-supplementation following 28 days of 6.4 g·day-1 of beta-alanine (N=11) or placebo (N=6; maltodextrin). Muscle biopsies obtained pre- and post-supplementation were analysed for muscle carnosine content. There were no main effects on sprint performance throughout the intermittent cycling test (all P>0.05). There was no group (P=0.69), time (P=0.50) or group x time interaction (P=0.26) on time-to-complete the 4-km time-trial. Time-to-completion did not change from pre- to post-supplementation for BA (-19.2 ± 45.6 s, P=0.43) or PL (+2.8 ± 31.6 s, P=0.99). Beta-alanine supplementation increased muscle carnosine content from pre- to post-supplementation (+9.4 ± 4.0 mmol·kg-1dm; P<0.0001) but was not related to performance changes (r=0.320, P=0.37). Chronic beta-alanine supplementation increased muscle carnosine content but did not improve short-duration sprint performance throughout simulated road race cycling, nor 4-km uphill time-trial performance conducted at the end of this cycling test.HighlightsPerformance during prolonged cycling events often depends on the ability to maintain an increased power output during higher intensity periods. Thus, cyclists are likely heavily dependent on their ability to resist fatigue during these periods of high-intensity activity.Meta-analytical data show beta-alanine to be an effective supplement to improve exercise outcomes, but little work exists on its efficacy during dynamic actions that are common during prolonged cycling.Beta-alanine supplementation increased muscle carnosine content but did not generate improvements in the performance of high-intensity cycling (10-s sprints or 4-km uphill time-trial) during a simulated road race cycling protocol.These data suggest that short duration sprints (≤10 s) and longer duration (>10 min) high-intensity activity throughout endurance cycling may not be improved with beta-alanine supplementation despite increases in muscle carnosine content.


Assuntos
Ciclismo , Carnosina , Adulto , Ciclismo/fisiologia , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Pessoa de Meia-Idade , Músculo Esquelético , Resistência Física , beta-Alanina
2.
Nutrients ; 13(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445003

RESUMO

Creatine has been considered an effective ergogenic aid for several decades; it can help athletes engaged in a variety of sports and obtain performance gains. Creatine supplementation increases muscle creatine stores; several factors have been identified that may modify the intramuscular increase and subsequent performance benefits, including baseline muscle Cr content, type II muscle fibre content and size, habitual dietary intake of Cr, aging, and exercise. Timing of creatine supplementation in relation to exercise has recently been proposed as an important consideration to optimise muscle loading and performance gains, although current consensus is lacking regarding the ideal ingestion time. Research has shifted towards comparing creatine supplementation strategies pre-, during-, or post-exercise. Emerging evidence suggests greater benefits when creatine is consumed after exercise compared to pre-exercise, although methodological limitations currently preclude solid conclusions. Furthermore, physiological and mechanistic data are lacking, in regard to claims that the timing of creatine supplementation around exercise moderates gains in muscle creatine and exercise performance. This review discusses novel scientific evidence on the timing of creatine intake, the possible mechanisms that may be involved, and whether the timing of creatine supplementation around exercise is truly a real concern.


Assuntos
Creatina/administração & dosagem , Suplementos Nutricionais , Exercício Físico/fisiologia , Músculo Esquelético/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/administração & dosagem , Creatina/efeitos adversos , Creatina/metabolismo , Suplementos Nutricionais/efeitos adversos , Esquema de Medicação , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Substâncias para Melhoria do Desempenho/efeitos adversos , Substâncias para Melhoria do Desempenho/metabolismo , Fatores de Tempo , Resultado do Tratamento
3.
Front Nutr ; 7: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373621

RESUMO

Purpose: High-intensity activity is an important aspect of football performance during competitive match play. The aim of this study was to investigate the effect of beta-alanine supplementation throughout a short-duration intense football-specific training period prior to an international competition on measures of high-intensity running performance. Methods: Twenty-four elite international U20 female footballers (age 18 ± 1 y, height 1.67 ± 0.07 m, body mass 62.7 ± 7.4 kg) volunteered to perform the YoYo Intermittent Recovery Test Level 1 (YoYo IR1), the Running Anaerobic Sprint Test (RAST) and a 20-m maximal sprint test on two separate occasions, separated by 3 weeks of training and supplementation. Participants were randomly assigned to receive either 6.4 g·day-1 sustained-release beta-alanine (BA, N = 12) or an equivalent dose of maltodextrin (placebo, PL, N = 12) throughout a 3-week standardized training camp. Results: There was a main effect of group (P = 0.05) and time (P = 0.004) on YoYo IR1; overall values were lower in PL and distance covered was lower post- vs. pre-supplementation. There was no group × time interaction (P = 0.07). There was an effect of sprint number for RAST, but no further main effects and there were no effect for the 20-m sprint. Conclusions: Top-level female footballers involved in this intense 3-week training period prior to a competition worsened their high-intensity intermittent exercise capacity, and this negative result was not attenuated by a short-duration BA supplementation protocol throughout the same period. Further work is necessary to elucidate whether adapted training protocols and BA dosing regimens could lead to better results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA