Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473769

RESUMO

The aim of this study was to investigate the comparative antiseizure activity of the l-enantiomers of d,l-fenfluramine and d,l-norfenfluramine and to evaluate the relationship between their concentration in plasma and brain and anticonvulsant activity. d,l-Fenfluramine, d,l-norfenfluramine and their individual enantiomers were evaluated in the mouse maximal electroshock seizure (MES) test. d,l-Fenfluramine, d,l-norfenfluramine and their individual l-enantiomers were also assessed in the DBA/2 mouse audiogenic seizure model. All compounds were administered intraperitoneally. Brain and plasma concentrations of the test compounds in DBA/2 mice were quantified and correlated with anticonvulsant activity. In the MES test, fenfluramine, norfenfluramine and their enantiomers showed comparable anticonvulsant activity, with ED50 values between 5.1 and 14.8 mg/kg. In the audiogenic seizure model, l-norfenfluramine was 9 times more potent than d,l-fenfluramine and 15 times more potent than l-fenfluramine based on ED50 (1.2 vs. 10.2 and 17.7 mg/kg, respectively). Brain concentrations of all compounds were about 20-fold higher than in plasma. Based on brain EC50 values, l-norfenfluramine was 7 times more potent than d,l-fenfluramine and 13 times more potent than l-fenfluramine (1940 vs. 13,200 and 25,400 ng/g, respectively). EC50 values for metabolically formed d,l-norfenfluramine and l-norfenfluramine were similar to brain EC50 values of the same compounds administered as such, suggesting that, in the audiogenic seizure model, the metabolites were responsible for the antiseizure activity of the parent compounds. Because of the evidence linking d-norfenfluramine to d,l-fenfluramine to cardiovascular and metabolic adverse effects, their l-enantiomers could potentially be safer follow-up compounds to d,l-fenfluramine. We found that, in the models tested, the activity of l-fenfluramine and l-norfenfluramine was comparable to that of the corresponding racemates. Based on the results in DBA/2 mice and other considerations, l-norfenfluramine appears to be a particularly attractive candidate for further evaluation as a novel, enantiomerically pure antiseizure medication.


Assuntos
Epilepsia Reflexa , Fenfluramina , Camundongos , Animais , Norfenfluramina/metabolismo , Anticonvulsivantes , Seguimentos , Camundongos Endogâmicos DBA , Convulsões
2.
Elife ; 112022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35234610

RESUMO

NBI-921352 (formerly XEN901) is a novel sodium channel inhibitor designed to specifically target NaV1.6 channels. Such a molecule provides a precision-medicine approach to target SCN8A-related epilepsy syndromes (SCN8A-RES), where gain-of-function (GoF) mutations lead to excess NaV1.6 sodium current, or other indications where NaV1.6 mediated hyper-excitability contributes to disease (Gardella and Møller, 2019; Johannesen et al., 2019; Veeramah et al., 2012). NBI-921352 is a potent inhibitor of NaV1.6 (IC500.051 µM), with exquisite selectivity over other sodium channel isoforms (selectivity ratios of 756 X for NaV1.1, 134 X for NaV1.2, 276 X for NaV1.7, and >583 Xfor NaV1.3, NaV1.4, and NaV1.5). NBI-921352is a state-dependent inhibitor, preferentially inhibiting inactivatedchannels. The state dependence leads to potent stabilization of inactivation, inhibiting NaV1.6 currents, including resurgent and persistent NaV1.6 currents, while sparing the closed/rested channels. The isoform-selective profile of NBI-921352 led to a robust inhibition of action-potential firing in glutamatergic excitatory pyramidal neurons, while sparing fast-spiking inhibitory interneurons, where NaV1.1 predominates. Oral administration of NBI-921352 prevented electrically induced seizures in a Scn8a GoF mouse,as well as in wild-type mouse and ratseizure models. NBI-921352 was effective in preventing seizures at lower brain and plasma concentrations than commonly prescribed sodium channel inhibitor anti-seizure medicines (ASMs) carbamazepine, phenytoin, and lacosamide. NBI-921352 waswell tolerated at higher multiples of the effective plasma and brain concentrations than those ASMs. NBI-921352 is entering phase II proof-of-concept trials for the treatment of SCN8A-developmental epileptic encephalopathy (SCN8A-DEE) and adult focal-onset seizures.


Assuntos
Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.6 , Animais , Mutação com Ganho de Função , Camundongos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/fisiologia , Ratos , Sódio , Bloqueadores dos Canais de Sódio/farmacologia
3.
eNeuro ; 6(6)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31685676

RESUMO

The role of neuroinflammation in the mechanisms of epilepsy development is important because inflammatory mediators provide tractable targets for intervention. Inflammation is intrinsically involved in the generation of childhood febrile seizures (FSs), and prolonged FS [febrile status epilepticus (FSE)] precedes a large proportion of adult cases of temporal lobe epilepsy (TLE). As TLE is often refractory to therapy and is associated with serious cognitive and emotional problems, we investigated whether its development can be prevented using anti-inflammatory strategies. Using an immature rat model of FSE [experimental FSE (eFSE)], we administered dexamethasone (DEX), a broad anti-inflammatory agent, over 3 d following eFSE. We assessed eFSE-provoked hippocampal network hyperexcitability by quantifying the presence, frequency, and duration of hippocampal spike series, as these precede and herald the development of TLE-like epilepsy. We tested whether eFSE provoked hippocampal microgliosis, astrocytosis, and proinflammatory cytokine production in male and female rats and investigated blood-brain barrier (BBB) breaches as a potential contributor. We then evaluated whether DEX attenuated these eFSE sequelae. Spike series were not observed in control rats given vehicle or DEX, but occurred in 41.6% of eFSE-vehicle rats, associated with BBB leakage and elevated hippocampal cytokines. eFSE did not induce astrocytosis or microgliosis but provoked BBB disruption in 60% of animals. DEX significantly reduced spike series prevalence (to 7.6%) and frequency, and abrogated eFSE-induced cytokine production and BBB leakage (to 20%). These findings suggest that a short, postinsult intervention with a clinically available anti-inflammatory agent potently attenuates epilepsy-predicting hippocampal hyperexcitability, potentially by minimizing BBB disruption and related neuroinflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Hipocampo/efeitos dos fármacos , Convulsões Febris/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Animais , Anti-Inflamatórios/uso terapêutico , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Citocinas/metabolismo , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Ratos , Convulsões Febris/metabolismo , Convulsões Febris/fisiopatologia , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia
4.
Epilepsia ; 59(11): 2005-2018, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30256385

RESUMO

OBJECTIVE: A subset of children with febrile status epilepticus (FSE) are at risk for development of temporal lobe epilepsy later in life. We sought a noninvasive predictive marker of those at risk that can be identified soon after FSE, within a clinically realistic timeframe. METHODS: Longitudinal T2 -weighted magnetic resonance imaging (T2 WI MRI) of rat pups at several time points after experimental FSE (eFSE) was performed on a high-field scanner followed by long-term continuous electroencephalography. In parallel, T2 WI MRI scans were performed on a 3.0-T clinical scanner. Finally, chronic T2 WI MRI signal changes were examined in rats that experienced eFSE and were imaged months later in adulthood. RESULTS: Epilepsy-predicting T2 changes, previously observed at 2 hours after eFSE, persisted for at least 6 hours, enabling translation to the clinic. Repeated scans, creating MRI trajectories of T2 relaxation times following eFSE, provided improved prediction of epileptogenesis compared with a single MRI scan. Predictive signal changes centered on limbic structures, such as the basolateral and medial amygdala. T2 WI MRI changes, originally described on high-field scanners, can also be measured on clinical MRI scanners. Chronically elevated T2 relaxation times in hippocampus were observed months after eFSE in rats, as noted for post-FSE changes in children. SIGNIFICANCE: Early T2 WI MRI changes after eFSE provide a strong predictive measure of epileptogenesis following eFSE, on both high-field and clinical MRI scanners. Importantly, the extension of the acute signal changes to at least 6 hours after the FSE enables its inclusion in clinical studies. Chronic elevations of T2 relaxation times within the hippocampal formation and related structures are common to human and rodent FSE, suggesting that similar processes are involved across species.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Progressão da Doença , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Estado Epiléptico/diagnóstico por imagem , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Febre/complicações , Masculino , Curva ROC , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/etiologia , Fatores de Tempo
5.
Cell Rep ; 14(10): 2402-12, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26947066

RESUMO

Insult-provoked transformation of neuronal networks into epileptic ones involves multiple mechanisms. Intervention studies have identified both dysregulated inflammatory pathways and NRSF-mediated repression of crucial neuronal genes as contributors to epileptogenesis. However, it remains unclear how epilepsy-provoking insults (e.g., prolonged seizures) induce both inflammation and NRSF and whether common mechanisms exist. We examined miR-124 as a candidate dual regulator of NRSF and inflammatory pathways. Status epilepticus (SE) led to reduced miR-124 expression via SIRT1--and, in turn, miR-124 repression--via C/EBPα upregulated NRSF. We tested whether augmenting miR-124 after SE would abort epileptogenesis by preventing inflammation and NRSF upregulation. SE-sustaining animals developed epilepsy, but supplementing miR-124 did not modify epileptogenesis. Examining this result further, we found that synthetic miR-124 not only effectively blocked NRSF upregulation and rescued NRSF target genes, but also augmented microglia activation and inflammatory cytokines. Thus, miR-124 attenuates epileptogenesis via NRSF while promoting epilepsy via inflammation.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/metabolismo , Proteínas Repressoras/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Imunoprecipitação da Cromatina , Citocinas/genética , Citocinas/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Redes Reguladoras de Genes/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Caínico/farmacologia , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Oligonucleotídeos Antissenso/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sirtuína 1/metabolismo , Estado Epiléptico/genética , Estado Epiléptico/patologia
6.
Exp Neurol ; 269: 242-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25939697

RESUMO

Evidence from animal models and patient data indicates that febrile status epilepticus (FSE) in early development can result in permanently diminished cognitive abilities. To understand the variability in cognitive outcome following FSE, we used MRI to measure dynamic brain metabolic responses to the induction of FSE in juvenile rats. We then compared these measurements to the ability to learn an active avoidance spatial task weeks later. T2 relaxation times were significantly lower in FSE rats that were task learners in comparison to FSE non-learners. While T2 time in whole brain held the greatest predictive power, T2 in hippocampus and basolateral amygdala were also excellent predictors. These signal differences in response to FSE indicate that rats that fail to meet metabolic and oxygen demand are more likely to develop spatial cognition deficits. Place cells from FSE non-learners had significantly larger firing fields and higher in-field firing rate than FSE learners and control animals and imply increased excitability in the pyramidal cells of FSE non-learners. These findings suggest a mechanistic cause for the spatial memory deficits in active avoidance and are relevant to other acute neurological insults in early development where cognitive outcome is a concern.


Assuntos
Encéfalo/patologia , Cognição/fisiologia , Processamento de Imagem Assistida por Computador , Transtornos da Memória/patologia , Estado Epiléptico/patologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Humanos , Memória/fisiologia , Transtornos da Memória/diagnóstico , Transtornos da Memória/fisiopatologia , Ratos , Estado Epiléptico/diagnóstico , Estado Epiléptico/fisiopatologia
7.
Neurobiol Stress ; 2: 10-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25884016

RESUMO

Epilepsy is more prevalent in populations with high measures of stress, but the neurobiological mechanisms are unclear. Stress is a common precipitant of seizures in individuals with epilepsy, and may provoke seizures by several mechanisms including changes in neurotransmitter and hormone levels within the brain. Importantly, stress during sensitive periods early in life contributes to 'brain programming', influencing neuronal function and brain networks. However, it is unclear if early-life stress influences limbic excitability and promotes epilepsy. Here we used an established, naturalistic model of chronic early-life stress (CES), and employed chronic cortical and limbic video-EEGs combined with molecular and cellular techniques to probe the contributions of stress to age-specific epilepsies and network hyperexcitability and identify the underlying mechanisms. In control male rats, EEGs obtained throughout development were normal and no seizures were observed. EEGs demonstrated epileptic spikes and spike series in the majority of rats experiencing CES, and 57% of CES rats developed seizures: Behavioral events resembling the human age-specific epilepsy infantile spasms occurred in 11/23 (48%), accompanied by EEG spikes and/or electrodecrements, and two additional rats (9%) developed limbic seizures that involved the amygdala. Probing for stress-dependent, endogenous convulsant molecules within amygdala, we examined the expression of the pro-convulsant neuropeptide corticotropin-releasing hormone (CRH), and found a significant increase of amygdalar--but not cortical--CRH expression in adolescent CES rats. In conclusion, CES of limited duration has long-lasting effects on brain excitability and may promote age-specific seizures and epilepsy. Whereas the mechanisms involved require further study, these findings provide important insights into environmental contributions to early-life seizures.

8.
eNeuro ; 2(5)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26730400

RESUMO

Epilepsy is a common neurological disorder with many causes. For temporal lobe epilepsy, antecedent insults are typically found. These risk factors include trauma or history of long fever-associated seizures (febrile status epilepticus) in childhood. Whereas the mechanisms by which such insults promote temporal lobe epilepsy are unknown, an extensive body of work has implicated inflammation and inflammatory mediators in both human and animal models of the disorder. However, direct evidence for an epileptogenic role for inflammation is lacking. Here we capitalized on a model where only a subgroup of insult-experiencing rodents develops epilepsy. We reasoned that if inflammation was important for generating epilepsy, then early inflammation should be more prominent in individuals destined to become epileptic compared with those that will not become epileptic. In addition, the molecular and temporal profile of inflammatory mediators would provide insights into which inflammatory pathways might be involved in the disease process. We examined inflammatory profiles in hippocampus and amygdala of individual rats and correlated them with a concurrent noninvasive, amygdalar magnetic resonance imaging epilepsy-predictive marker. We found significant individual variability in the expression of several important inflammatory mediators, but not in others. Of interest, a higher expression of a subset of hippocampal and amygdalar inflammatory markers within the first few hours following an insult correlated with the epilepsy-predictive signal. These findings suggest that some components of the inflammatory gene network might contribute to the process by which insults promote the development of temporal lobe epilepsy.


Assuntos
Tonsila do Cerebelo/imunologia , Hipocampo/imunologia , Convulsões Febris/imunologia , Estado Epiléptico/imunologia , Tonsila do Cerebelo/patologia , Animais , Astrócitos/imunologia , Astrócitos/patologia , Western Blotting , Modelos Animais de Doenças , Progressão da Doença , Feminino , Proteína HMGB1/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Interleucina-1beta/metabolismo , Imageamento por Ressonância Magnética , Masculino , Microglia/imunologia , Microglia/patologia , Neurônios/imunologia , Neurônios/patologia , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Convulsões Febris/patologia , Estado Epiléptico/patologia
9.
Elife ; 3: e01267, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25117540

RESUMO

The mechanisms generating epileptic neuronal networks following insults such as severe seizures are unknown. We have previously shown that interfering with the function of the neuron-restrictive silencer factor (NRSF/REST), an important transcription factor that influences neuronal phenotype, attenuated development of this disorder. In this study, we found that epilepsy-provoking seizures increased the low NRSF levels in mature hippocampus several fold yet surprisingly, provoked repression of only a subset (∼10%) of potential NRSF target genes. Accordingly, the repressed gene-set was rescued when NRSF binding to chromatin was blocked. Unexpectedly, genes selectively repressed by NRSF had mid-range binding frequencies to the repressor, a property that rendered them sensitive to moderate fluctuations of NRSF levels. Genes selectively regulated by NRSF during epileptogenesis coded for ion channels, receptors, and other crucial contributors to neuronal function. Thus, dynamic, selective regulation of NRSF target genes may play a role in influencing neuronal properties in pathological and physiological contexts.


Assuntos
Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/genética , Proteínas Repressoras/genética , Convulsões/genética , Transcrição Gênica , Animais , Transporte Biológico , Cromatina/química , Cromatina/metabolismo , Perfilação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Microtomia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/metabolismo , Convulsões/metabolismo , Convulsões/fisiopatologia , Transdução de Sinais , Técnicas de Cultura de Tecidos
10.
Epilepsy Curr ; 14(1 Suppl): 15-22, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24955071

RESUMO

Febrile seizures (FS) are the most common type of seizures in infants and preschool children. Inflammatory mediators, which are known triggers of fever, have also been implicated as contributors to the onset of these seizures. Evidence that inflammation is present following FS and during established epilepsy suggests that it could also influence epileptogenesis. However, the potential involvement of inflammatory mediators to the epileptogenic process that may follow prolonged FS has yet to be fully determined. This article reviews the current state of our knowledge and major gaps that remain by focusing on four questions: Does inflammation contribute to the generation of FS? Does prolonged FS or febrile status epilepticus (SE) cause temporal lobe epilepsy in the absence of predisposing factors? Does inflammation contribute to the process by which febrile SE causes limbic epilepsy? And finally, can inflammation be a foundation for biomarkers and therapy for FS-induced epileptogenesis?

11.
J Neurosci ; 34(26): 8672-84, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24966369

RESUMO

A significant proportion of temporal lobe epilepsy (TLE), a common, intractable brain disorder, arises in children with febrile status epilepticus (FSE). Preventative therapy development is hampered by our inability to identify early the FSE individuals who will develop TLE. In a naturalistic rat model of FSE, we used high-magnetic-field MRI and long-term video EEG to seek clinically relevant noninvasive markers of epileptogenesis and found that reduced amygdala T2 relaxation times in high-magnetic-field MRI hours after FSE predicted experimental TLE. Reduced T2 values likely represented paramagnetic susceptibility effects derived from increased unsaturated venous hemoglobin, suggesting augmented oxygen utilization after FSE termination. Indeed, T2 correlated with energy-demanding intracellular translocation of the injury-sensor high-mobility group box 1 (HMGB1), a trigger of inflammatory cascades implicated in epileptogenesis. Use of deoxyhemoglobin-sensitive MRI sequences enabled visualization of the predictive changes on lower-field, clinically relevant scanners. This novel MRI signature delineates the onset and suggests mechanisms of epileptogenesis that follow experimental FSE.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Imageamento por Ressonância Magnética/métodos , Convulsões Febris/complicações , Estado Epiléptico/complicações , Animais , Biomarcadores , Encéfalo/patologia , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/patologia , Epilepsia/fisiopatologia , Ratos , Ratos Sprague-Dawley , Convulsões Febris/patologia , Convulsões Febris/fisiopatologia , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia
12.
Ann Neurol ; 70(3): 454-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21905079

RESUMO

OBJECTIVE: Enduring, abnormal expression and function of the ion channel hyperpolarization-activated cyclic adenosine monophosphate gated channel type 1 (HCN1) occurs in temporal lobe epilepsy (TLE). We examined the underlying mechanisms, and investigated whether interfering with these mechanisms could modify disease course. METHODS: Experimental TLE was provoked by kainic acid-induced status epilepticus (SE). HCN1 channel repression was examined at mRNA, protein, and functional levels. Chromatin immunoprecipitation was employed to identify the transcriptional mechanism of repressed HCN1 expression, and the basis for their endurance. Physical interaction of the repressor, NRSF, was abolished using decoy oligodeoxynucleotides (ODNs). Video/electroencephalographic recordings were performed to assess the onset and initial pattern of spontaneous seizures. RESULTS: Levels of NRSF and its physical binding to the Hcn1 gene were augmented after SE, resulting in repression of HCN1 expression and HCN1-mediated currents (I(h) ), and reduced I(h) -dependent resonance in hippocampal CA1 pyramidal cell dendrites. Chromatin changes typical of enduring, epigenetic gene repression were apparent at the Hcn1 gene within a week after SE. Administration of decoy ODNs comprising the NRSF DNA-binding sequence (neuron restrictive silencer element [NRSE]), in vitro and in vivo, reduced NRSF binding to Hcn1, prevented its repression, and restored I(h) function. In vivo, decoy NRSE ODN treatment restored theta rhythm and altered the initial pattern of spontaneous seizures. INTERPRETATION: Acquired HCN1 channelopathy derives from NRSF-mediated transcriptional repression that endures via chromatin modification and may provide insight into the mechanisms of a number of channelopathies that coexist with, and may contribute to, the conversion of a normal brain into an epileptic one.


Assuntos
Canalopatias/fisiopatologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Nucleotídeos Cíclicos/metabolismo , Canais de Potássio/fisiologia , Proteínas Repressoras/fisiologia , Animais , Região CA1 Hipocampal/patologia , Canalopatias/genética , Canalopatias/metabolismo , Cromatina/patologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Dendritos/patologia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Agonistas de Aminoácidos Excitatórios , Expressão Gênica/genética , Expressão Gênica/fisiologia , Hipocampo/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/fisiologia , Ácido Caínico , Masculino , Canais de Potássio/genética , Ratos , Ratos Wistar , Proteínas Repressoras/antagonistas & inibidores , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia
13.
Neurosci Lett ; 497(3): 155-62, 2011 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-21356275

RESUMO

Epidemiological and recent prospective analyses of long febrile seizures (FS) and febrile status epilepticus (FSE) support the idea that in some children, such seizures can provoke temporal lobe epilepsy (TLE). Because of the high prevalence of these seizures, if epilepsy was to arise as their direct consequence, this would constitute a significant clinical problem. Here we discuss these issues, and describe the use of animal models of prolonged FS and of FSE to address the following questions: Are long FS epileptogenic? What governs this epileptogenesis? What are the mechanisms? Are there any predictive biomarkers of the epileptogenic process, and can these be utilized, together with information about the mechanisms of epileptogenesis, for eventual prevention of the TLE that results from long FS and FSE.


Assuntos
Biomarcadores/metabolismo , Encéfalo/fisiopatologia , Convulsões Febris/fisiopatologia , Convulsões Febris/terapia , Convulsões/fisiopatologia , Convulsões/terapia , Animais , Humanos , Convulsões/etiologia , Convulsões Febris/complicações
14.
Epilepsia ; 52(1): 179-84, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21219304

RESUMO

A missense mutation (R43Q) in the γ2 subunit of the γ-aminobutyric acid (GABA)(A) receptor is associated with generalized (genetic) epilepsy with febrile seizures plus (GEFS+). Heterozygous GABA(A) γ2(R43Q) mice displayed a lower temperature threshold for thermal seizures as compared to wild-type littermates. Temperature-dependent internalization of GABA(A) γ2(R43Q)-containing receptors has been proposed as a mechanism underlying febrile seizure genesis in patients with this mutation. We tested this idea using the GABA(A) γ2(R43Q) knockin mouse model and analyzed GABAergic miniature postsynaptic inhibitory currents (mIPSCs) in acute brain slices after exposure to varying temperatures. Incubation of slices at an elevated temperature increased mIPSC amplitude in neurons from heterozygous mice, with no change seen in wild-type controls. [³H]Flumazenil binding measured in whole-brain homogenates from mutant and control mice following elevation of body temperature showed no temperature-dependent differences in γ2-containing receptor density. Therefore, in vivo mouse data do not support earlier in vitro observations that proposed temperature-dependent internalization of γ2 R43Q containing GABA(A) receptors as the cellular mechanism underlying febrile seizure genesis in patients with the GABA(A) γ2(R43Q) mutation.


Assuntos
Temperatura Corporal/fisiologia , Modelos Animais de Doenças , Epilepsia Generalizada/fisiopatologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Inibição Neural/fisiologia , Receptores de GABA-A/fisiologia , Convulsões Febris/fisiopatologia , Animais , Temperatura Corporal/genética , Córtex Cerebral/fisiologia , Epilepsia Generalizada/genética , Técnicas de Introdução de Genes , Potenciais Pós-Sinápticos Inibidores/genética , Camundongos , Camundongos Transgênicos , Convulsões Febris/genética
15.
J Neurosci ; 30(39): 13005-15, 2010 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-20881118

RESUMO

Chronic stress impairs learning and memory in humans and rodents and disrupts long-term potentiation (LTP) in animal models. These effects are associated with structural changes in hippocampal neurons, including reduced dendritic arborization. Unlike the generally reversible effects of chronic stress on adult rat hippocampus, we have previously found that the effects of early-life stress endure and worsen during adulthood, yet the mechanisms for these clinically important sequelae are poorly understood. Stress promotes secretion of the neuropeptide corticotropin-releasing hormone (CRH) from hippocampal interneurons, activating receptors (CRF(1)) located on pyramidal cell dendrites. Additionally, chronic CRF(1) occupancy negatively affects dendritic arborization in mouse organotypic slice cultures, similar to the pattern observed in middle-aged, early-stressed (CES) rats. Here we found that CRH expression is augmented in hippocampus of middle-aged CES rats, and then tested whether the morphological defects and poor memory performance in these animals involve excessive activation of CRF(1) receptors. Central or peripheral administration of a CRF(1) blocker following the stress period improved memory performance of CES rats in novel-object recognition tests and in the Morris water maze. Consonant with these effects, the antagonist also prevented dendritic atrophy and LTP attenuation in CA1 Schaffer collateral synapses. Together, these data suggest that persistently elevated hippocampal CRH-CRF(1) interaction contributes importantly to the structural and cognitive impairments associated with early-life stress. Reducing CRF(1) occupancy post hoc normalized hippocampal function during middle age, thus offering potential mechanism-based therapeutic interventions for children affected by chronic stress.


Assuntos
Transtornos Cognitivos/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Estresse Psicológico/metabolismo , Animais , Animais Recém-Nascidos , Doença Crônica , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Feminino , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Estresse Psicológico/fisiopatologia
16.
Proc Natl Acad Sci U S A ; 107(29): 13123-8, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20615973

RESUMO

Stress affects the hippocampus, a brain region crucial for memory. In rodents, acute stress may reduce density of dendritic spines, the location of postsynaptic elements of excitatory synapses, and impair long-term potentiation and memory. Steroid stress hormones and neurotransmitters have been implicated in the underlying mechanisms, but the role of corticotropin-releasing hormone (CRH), a hypothalamic hormone also released during stress within hippocampus, has not been elucidated. In addition, the causal relationship of spine loss and memory defects after acute stress is unclear. We used transgenic mice that expressed YFP in hippocampal neurons and found that a 5-h stress resulted in profound loss of learning and memory. This deficit was associated with selective disruption of long-term potentiation and of dendritic spine integrity in commissural/associational pathways of hippocampal area CA3. The degree of memory deficit in individual mice correlated significantly with the reduced density of area CA3 apical dendritic spines in the same mice. Moreover, administration of the CRH receptor type 1 (CRFR(1)) blocker NBI 30775 directly into the brain prevented the stress-induced spine loss and restored the stress-impaired cognitive functions. We conclude that acute, hours-long stress impairs learning and memory via mechanisms that disrupt the integrity of hippocampal dendritic spines. In addition, establishing the contribution of hippocampal CRH-CRFR(1) signaling to these processes highlights the complexity of the orchestrated mechanisms by which stress impacts hippocampal structure and function.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Espinhas Dendríticas/patologia , Hipocampo/fisiopatologia , Memória/fisiologia , Transdução de Sinais , Estresse Psicológico/fisiopatologia , Animais , Cognição/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Estresse Psicológico/metabolismo , Sinapses/patologia , Fatores de Tempo
17.
J Neurosci ; 30(22): 7484-94, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20519523

RESUMO

Whether long febrile seizures (FSs) can cause epilepsy in the absence of genetic or acquired predisposing factors is unclear. Having established causality between long FSs and limbic epilepsy in an animal model, we studied here if the duration of the inciting FSs influenced the probability of developing subsequent epilepsy and the severity of the spontaneous seizures. We evaluated if interictal epileptifom activity and/or elevation of hippocampal T2 signal on magnetic resonance image (MRI) provided predictive biomarkers for epileptogenesis, and if the inflammatory mediator interleukin-1beta (IL-1beta), an intrinsic element of FS generation, contributed also to subsequent epileptogenesis. We found that febrile status epilepticus, lasting an average of 64 min, increased the severity and duration of subsequent spontaneous seizures compared with FSs averaging 24 min. Interictal activity in rats sustaining febrile status epilepticus was also significantly longer and more robust, and correlated with the presence of hippocampal T2 changes in individual rats. Neither T2 changes nor interictal activity predicted epileptogenesis. Hippocampal levels of IL-1beta were significantly higher for >24 h after prolonged FSs. Chronically, IL-1beta levels were elevated only in rats developing spontaneous limbic seizures after febrile status epilepticus, consistent with a role for this inflammatory mediator in epileptogenesis. Establishing seizure duration as an important determinant in epileptogenesis and defining the predictive roles of interictal activity, MRI, and inflammatory processes are of paramount importance to the clinical understanding of the outcome of FSs, the most common neurological insult in infants and children.


Assuntos
Biomarcadores/metabolismo , Modelos Animais de Doenças , Epilepsia/etiologia , Hipocampo/fisiopatologia , Convulsões Febris/metabolismo , Convulsões Febris/patologia , Fatores Etários , Animais , Animais Recém-Nascidos , Antígeno CD11b/metabolismo , Estimulação Elétrica/efeitos adversos , Eletroencefalografia/métodos , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glicoproteínas/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Interleucina-1beta/metabolismo , Lectinas/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Versicanas , Gravação em Vídeo/métodos
18.
J Biol Chem ; 285(13): 9823-9834, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20100831

RESUMO

Voltage-gated sodium channels are required for the initiation and propagation of action potentials. Mutations in the neuronal voltage-gated sodium channel SCN1A are associated with a growing number of disorders including generalized epilepsy with febrile seizures plus (GEFS+),(7) severe myoclonic epilepsy of infancy, and familial hemiplegic migraine. To gain insight into the effect of SCN1A mutations on neuronal excitability, we introduced the human GEFS+ mutation SCN1A-R1648H into the orthologous mouse gene. Scn1a(RH/RH) mice homozygous for the R1648H mutation exhibit spontaneous generalized seizures and premature death between P16 and P26, whereas Scn1a(RH/+) heterozygous mice exhibit infrequent spontaneous generalized seizures, reduced threshold and accelerated propagation of febrile seizures, and decreased threshold to flurothyl-induced seizures. Inhibitory cortical interneurons from P5-P15 Scn1a(RH/+) and Scn1a(RH/RH) mice demonstrated slower recovery from inactivation, greater use-dependent inactivation, and reduced action potential firing compared with wild-type cells. Excitatory cortical pyramidal neurons were mostly unaffected. These results suggest that this SCN1A mutation predominantly impairs sodium channel activity in interneurons, leading to decreased inhibition. Decreased inhibition may be a common mechanism underlying clinically distinct SCN1A-derived disorders.


Assuntos
Regulação da Expressão Gênica , Interneurônios/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Sódio/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Homozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1 , Convulsões/genética
19.
J Neurosci ; 29(27): 8847-57, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19587292

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels are the molecular substrate of the hyperpolarization-activated inward current (I(h)). Because the developmental profile of HCN channels in the thalamus is not well understood, we combined electrophysiological, molecular, immunohistochemical, EEG recordings in vivo, and computer modeling techniques to examine HCN gene expression and I(h) properties in rat thalamocortical relay (TC) neurons in the dorsal part of the lateral geniculate nucleus and the functional consequence of this maturation. Recordings of TC neurons revealed an approximate sixfold increase in I(h) density between postnatal day 3 (P3) and P106, which was accompanied by significantly altered current kinetics, cAMP sensitivity, and steady-state activation properties. Quantification on tissue levels revealed a significant developmental decrease in cAMP. Consequently the block of basal adenylyl cyclase activity was accompanied by a hyperpolarizing shift of the I(h) activation curve in young but not adult rats. Quantitative analyses of HCN channel isoforms revealed a steady increase of mRNA and protein expression levels of HCN1, HCN2, and HCN4 with reduced relative abundance of HCN4. Computer modeling in a simplified thalamic network indicated that the occurrence of rhythmic delta activity, which was present in the EEG at P12, differentially depended on I(h) conductance and modulation by cAMP at different developmental states. These data indicate that the developmental increase in I(h) density results from increased expression of three HCN channel isoforms and that isoform composition and intracellular cAMP levels interact in determining I(h) properties to enable progressive maturation of rhythmic slow-wave sleep activity patterns.


Assuntos
Relógios Biológicos/fisiologia , Córtex Cerebral/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Canais Iônicos/biossíntese , Neurônios/metabolismo , Canais de Potássio/biossíntese , Tálamo/metabolismo , Animais , Animais Recém-Nascidos , Córtex Cerebral/crescimento & desenvolvimento , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/genética , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Neurônios/fisiologia , Canais de Potássio/genética , Isoformas de Proteínas/biossíntese , Ratos , Ratos Sprague-Dawley , Tálamo/crescimento & desenvolvimento
20.
Proc Natl Acad Sci U S A ; 106(16): 6766-71, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19342486

RESUMO

Mutations in doublecortin (DCX) are associated with intractable epilepsy in humans, due to a severe disorganization of the neocortex and hippocampus known as classical lissencephaly. However, the basis of the epilepsy in lissencephaly remains unclear. To address potential functional redundancy with murin Dcx, we targeted one of the closest homologues, doublecortin-like kinase 2 (Dclk2). Here, we report that Dcx; Dclk2-null mice display frequent spontaneous seizures that originate in the hippocampus, with most animals dying in the first few months of life. Elevated hippocampal expression of c-fos and loss of somatostatin-positive interneurons were identified, both known to correlate with epilepsy. Dcx and Dclk2 are coexpressed in developing hippocampus, and, in their absence, there is dosage-dependent disrupted hippocampal lamination associated with a cell-autonomous simplification of pyramidal dendritic arborizations leading to reduced inhibitory synaptic tone. These data suggest that hippocampal dysmaturation and insufficient receptive field for inhibitory input may underlie the epilepsy in lissencephaly, and suggest potential therapeutic strategies for controlling epilepsy in these patients.


Assuntos
Diferenciação Celular , Hipocampo/enzimologia , Hipocampo/patologia , Proteínas Associadas aos Microtúbulos/deficiência , Neurônios/enzimologia , Neuropeptídeos/deficiência , Proteínas Serina-Treonina Quinases/deficiência , Convulsões/enzimologia , Animais , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/patologia , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Hipocampo/embriologia , Interneurônios/efeitos dos fármacos , Interneurônios/enzimologia , Interneurônios/patologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neuropeptídeos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/enzimologia , Células Piramidais/patologia , Convulsões/patologia , Somatostatina/metabolismo , Análise de Sobrevida , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Desmame , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...