Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409214, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958439

RESUMO

Synthetic molecular photoswitches have taken center stage as high-precision tools to introduce light-responsiveness at the smallest scales. Today they are found in all areas of applied chemistry, covering materials research, chemical biology, catalysis, or nanotechnology. For a next step of applicability truly orthogonal photoswitching is highly desirable but to date such independent addressability of different photoswitches remains to be highly challenging. In this work we present the first example of all-visible, all-light responsive, and path independent orthogonal photoswitching. By combining two recently developed indigoid photoswitches - peri-anthracenethioindigo and a rhodanine-based chromophore - a four-state system is established and each state can be accessed in high yields completely independently and also with visible light irradiation only. The four states give rise to four different colors, which can be transferred to a solid polymer matrix yielding a versatile multi-state photochromic material. Further, combination with a fluorescent dye as third component is possible, demonstrating applicability of this orthogonal photoswitching system in all-photonic molecular logic behavior and information processing.

2.
Angew Chem Int Ed Engl ; : e202405299, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958449

RESUMO

Molecular gearing systems are technomimetic nanoscale analogues to complex geared machinery in the macroscopic world and are likewise defined as systems incorporating intermeshed elements which perform correlated rotational motions by mechanical engagement. Only recently, new methods to actively drive molecular gearing motions instead of relying on passive thermal activation have been developed. Further progress in this endeavor will pave the way for unidirectional molecular gearing devices with a distinct type of molecular machine awaiting its realization. Within this work an essential step towards this goal is achieved by evidencing directional biases for the light-induced rotations in molecular photogear system 1. Using a custom-designed LED-coupled chiral cryo-HPLC setup for the in-situ irradiation of enantiomeric analytes, an intrinsic selectivity for clockwise or counterclockwise rotations was elucidated experimentally. Significant directional biases in the photogearing processes and light-induced single bond rotations (SBRs) are observed for photogear 1 with directional preferences of up to 4.8:1. Harnessing these effects will allow to rationally design and construct a fully directional molecular gearing motor in the future.

3.
J Am Chem Soc ; 146(14): 9575-9582, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38536769

RESUMO

Diarylethenes belong to the most eminent photoswitches and have been studied for many decades. They are found in virtually every field of application and have become highly valuable molecular tools for instilling light-responsiveness into materials, catalysts, biological systems, or pharmacology. In this work, we present a novel and distinct type of pyrimidine-based aza-diarylethene, which undergoes a highly unusual zwitterion-forming photoreaction. During this fully reversible process, a CN double bond is established under concomitant aromatization and thiophene-ring opening. The metastable zwitterion thus possesses a positively charged extended aromatic structure and an independent conjugated thiolate function. It can further photoisomerize between a more stable Z and a less stable E isomer, resulting in effective four-state photoswitching. Unusual for diarylethenes, the metastable isomers show negative solvatochromism and red-shifted absorption in apolar solvents. With this behavior, aza-diarylethenes effectively bridge the properties of merocyanines and diarylethenes. Thermal stability of the zwitterions can be modulated from very labile to highly stable behavior in response to pH, again in a fully reversible manner. Pyrimidine-based aza-diarylethene thus establishes a unique photoreaction mechanism for diarylethenes, allowing control of charge separation, thermal stability, and color generation in a different way than hitherto possible.

4.
Angew Chem Int Ed Engl ; 63(21): e202318767, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38315498

RESUMO

The use of molecular photoswitches has spread to virtually every field of pure and applied chemistry because of the extraordinary level of control they provide over the behavior of matter at the smallest scales. Photoswitches possess at least two different states with distinct structures and/or electronics and further functionalization of their core chromophore structures is needed to tailor them for a specific application. In this work we present a different concept for the generation and use of molecular photoswitches. It allows not only simultaneous establishment of photochromism and functionalization, but also full recyclability of a non-photochromic precursor material. Using a high-yielding and reversible ammonium salt formation, a functional group is introduced into a symmetric precursor while at the same time a strong electronic push-pull character is established in the structure. The resulting desymmetrization leads to efficient photoswitching capacity and the functional group can be fully removed subsequently by a simple heating step recovering the precursor for another functionalization round. We finally demonstrate feasibility of this concept over two consecutive closed loop functionalization/photoswitching/recovery steps. This concept offers great potential in any chemical research and application driven area but especially for the creation of responsive reprogrammable materials, no-background photoswitch labeling, and sustainable chemistry.

5.
J Am Chem Soc ; 146(3): 1894-1903, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207286

RESUMO

Molecular photoswitches are highly desirable in all chemistry-related areas of research. They provide effective outside control over geometric and electronic changes at the nanoscale using an easy to apply, waste-free stimulus. However, simple and effective access to such molecular tools is typically not granted, and elaborate syntheses and substitution schemes are needed in order to obtain efficient photoswitching properties. Here we present a series of rhodanine-based photoswitches that can be prepared in one simple synthetic step without requiring elaborate purification. Photoswitching is induced by UV and visible light in both switching directions, and thermal stabilities of the metastable states as well as quantum yields are very high. An additional benefit is the hydrogen-bonding capacity of the rhodanine fragment, which enables applications in supramolecular or medicinal chemistry. We further show that the known rhodanine-based inhibitor SMI-16a is a photoswitchable apoptosis inducer. The biological activity of SMI-16a can effectively be switched ON or OFF by reversible photoisomerization between the inactive E and the active Z isomer. Rhodanine-based photoswitches therefore represent an easy to access and highly valuable molecular toolbox for implementing light responsiveness to the breadth of functional molecular systems.

6.
Chemistry ; 30(6): e202302267, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779321

RESUMO

The control of molecular motions is a central topic of molecular machine research. Molecular brakes are fundamental building blocks towards such goal as they allow deliberately decelerating specific motions after an outside stimulus is applied. Here we present azotriptycenes as structural framework for light-controlled molecular brakes. The intrinsic kinetics and their changes upon azotriptycene isomerization are scrutinized comprehensively by a mixed theoretical and variable temperature NMR approach. With azotriptycenes C-N bond rotation rates can be decelerated or accelerated reversibly by up to five orders of magnitude. Rate change effects are highly localized and are strongest for the C-N bond connecting a triptycene rotor fragment to the central diazo group. The detailed mechanistic insights provide a solid basis for further conscious design and applications in the future.

7.
Adv Sci (Weinh) ; 11(6): e2305948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039433

RESUMO

Thanks to the development of novel electron acceptor materials, the power conversion efficiencies (PCE) of organic photovoltaic (OPV) devices are now approaching 20%. Further improvement of PCE is complicated by the need for a driving force to split strongly bound excitons into free charges, causing voltage losses. This review discusses recent approaches to finding efficient OPV systems with minimal driving force, combining near unity quantum efficiency (maximum short circuit currents) with optimal energy efficiency (maximum open circuit voltages). The authors discuss apparently contradicting results on the amount of exciton binding in recent literature, and approaches to harmonize the findings. A comprehensive view is then presented on motifs providing a driving force for charge separation, namely hybridization at the donor:acceptor interface and polarization effects in the bulk, of which quadrupole moments (electrostatics) play a leading role. Apart from controlling the energies of the involved states, these motifs also control the dynamics of recombination processes, which are essential to avoid voltage and fill factor losses. Importantly, all motifs are shown to depend on both molecular structure and process conditions. The resulting high dimensional search space advocates for high throughput (HT) workflows. The final part of the review presents recent HT studies finding consolidated structure-property relationships in OPV films and devices from various deposition methods, from research to industrial upscaling.

8.
Angew Chem Int Ed Engl ; 62(52): e202312955, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37806956

RESUMO

Molecular photoswitching with red light is greatly desired to evade photodamage and achieve specific photoresponses. In virtually all reported cases however, only one switching direction uses red light while for the reverse switching, UV or visible light is needed. All-red-light photoswitching brings with it the clear advantage of pushing photoswitching to the limit of the low-energy spectrum, but no viable system is available currently. Here we report on peri-anthracenethioindigo (PAT) as molecular scaffold for highly efficient all-red-light photoswitching with an outstanding performance and property profile. The PAT photoswitch provides near-infrared (NIR) absorption up to 850 nm, large negative photochromism with more than 140 nm maxima shifts and changes color from green to blue upon irradiation with two shades of red light. Thermal stability of the metastable Z isomer is high with a corresponding half-life of days at 20 °C. Application in red-light responsive polymers undergoing pronounced and reversible green to blue color changes demonstrate spatially resolved photoswitching. The PAT photoswitch thus offers unique responsiveness to very low energy light together with predictable and large geometrical changes within a rigid molecular scaffold. We expect a plethora of applications for PAT in the near future, e.g. in materials, molecular machines or biological context.

9.
Nat Commun ; 14(1): 4382, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474507

RESUMO

Photoswitches are indispensable tools for responsive chemical nanosystems and are used today in almost all areas of the natural sciences. Hemiindigo (HI) derivatives have recently been introduced as potent photoswitches, but their full applicability has been hampered by the limited possibilities of their functionalization and structural modification. Here we report on a short and easy to diversify synthesis yielding diaryl-HIs bearing one additional aromatic residue at the central double bond. The resulting chromophores offer an advantageous property profile combining red-light responsiveness, high thermal bistability, strong isomer accumulations in both switching directions, strong photochromism, tunable acid responsiveness, and acid gating. With this progress, a broader structural realm becomes accessible for HI photoswitches, which can now be synthetically tailored for advanced future applications, e.g., in research on molecular machines and switches, in studies of photoisomerization mechanisms, or in the generation of smart and addressable materials. To showcase the potential of these distinct light-responsive molecular tools, we demonstrate four-state switching, chemical fueling, and reversible inscription into transparent polymers using green and red light as well as acid/base stimuli, in addition to a comprehensive photochemical study of all compounds.

10.
Nat Commun ; 14(1): 4595, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524701

RESUMO

Light driven synthetic molecular motors represent crucial building blocks for advanced molecular machines and their applications. A standing challenge is the development of very fast molecular motors able to perform rotations with kHz, MHz or even faster frequencies. Central to this challenge is the direct experimental evidence of directionality because analytical methods able to follow very fast motions rarely deliver precise geometrical insights. Here, a general photochemical method for elucidation of directional motions is presented. In a macrocyclization approach the molecular motor rotations are restricted and forced to proceed in two separate ~180° rotation-photoequilibria. Therefore, all four possible photoinduced rotation steps (clockwise and counterclockwise directions) can be quantified. Comparison of the corresponding quantum yields to the unrestricted motor delivers direct evidence for unidirectionality. This method can be used for any ultrafast molecular motor even in cases where no high energy intermediates are present during the rotation cycle.

11.
J Am Chem Soc ; 145(24): 13081-13088, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279894

RESUMO

The construction of sophisticated molecular machines requires not only precise control of energy fueled motions but their integration into larger functional architectures. Macrocyclization of molecular motors is a way to harness the intrinsic directionality of their rotation and use them to actively power different processes at the nano-scale. An effective concept in this regard uses a defined fragment of the molecular motor as a revolving door within the macrocycle. In this way, motor motions can be transmitted to distant structural entities, other rotations can be actively accelerated, or mechanical molecular threading events can be realized. In this work, a dual macrocyclization approach is presented, which not only allows to supersize the revolving door element but also structurally reconfigure the macrocycle in which the revolving door rotates. Unique possibilities for a multi-level precision control over integrated directional motions are thus opened up without deteriorating the functionality of the molecular machine.

12.
Chem Sci ; 14(21): 5734-5742, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37265733

RESUMO

Diaryl-hemithioindigos (diaryl-HTIs) are derivatives of a novel class of highly functionalized indigoid chromophores. In this work a systematic study of the electronic effects on their photoswitching reveals the design principles for achieving an excellent property profile. Two key elements need to be invoked for perfect diaryl-HTI performance, first introduction of strong electron donors and second establishment of cross-conjugation. The resulting photoswitches combine high thermal stability, large extinction coefficients, red-light responsiveness, pronounced photochromism, and strong isomer accumulation in the photostationary states with precise geometry changes. By using the inherent basicity of their strong electron donor moiety, diaryl-HTIs can be rendered into very potent tools for molecular logic applications. We demonstrate a variety of binary logic setups as well as sophisticated three- and four-input keypad locks for sequential logic operations. Three distinct states and up to four different stimuli are invoked for this multi-level molecular information processing. Diaryl-HTIs have thus entered the stage as very capable and promising photoswitch motives for anyone interested in reversible visible- and red-light as well as multi-stimuli responsive molecular behavior.

13.
J Am Chem Soc ; 145(27): 14811-14822, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364887

RESUMO

The Hula-Twist (HT) photoreaction represents a fundamental photochemical pathway for bond isomerizations and is defined by the coupled motion of a double bond and an adjacent single bond. This photoreaction has been suggested as the defining motion for a plethora of light-responsive chromophores such as retinal within opsins, coumaric acid within photoactive yellow protein, or vitamin D precursors, and stilbenes in solution. However, due to the fleeting character of HT photoproducts a direct experimental observation of this coupled molecular motion was severely hampered until recently. To solve this dilemma, the Dube group has designed a molecular framework able to deliver unambiguous experimental evidence of the HT photoreaction. Using sterically crowded atropisomeric hemithioindigo (HTI) the HT photoproducts are rendered thermally stable and can be observed directly after their formation. However, following the ultrafast excited state process of the HT photoreaction itself has not been achieved so far and thus crucial information for an elementary understanding is still missing. In this work, we present the first ultrafast spectroscopy study of the HT photoreaction in HTI and probe the competition between different excited state processes. Together with extensive excited state calculations a detailed mechanistic picture is developed explaining the significant solvent effects on the HT photoreaction and revealing the intricate interplay between productive isomerizations and unproductive twisted intramolecular charge transfer (TICT) processes. With this study essential insights are thus gained into the mechanism of complex multibond rotations in the excited state, which will be of primary importance for further developments in this field.

14.
Angew Chem Int Ed Engl ; 61(43): e202210855, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36040861

RESUMO

A survey of heterocyclic hemithioindigo photoswitches is presented identifying a number of structural motives with outstanding property profiles. The highly sought-after combination of pronounced color change, quantitative switching in both directions, exceptional high quantum yields, and tunable high thermal stability of metastable states can be realized with 4-imidazole, 2-pyrrole, and 3-indole-based derivatives. In the former, an unusual preorganization using isomer selective chalcogen- and hydrogen bonding allows to precisely control geometry changes and tautomerism upon switching. Heterocyclic hemithioindigos thus represent highly promising photoswitches with advanced capabilities that will be of great value to anyone interested in establishing defined and reversible control at the molecular level.

15.
Nat Chem ; 14(6): 670-676, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35437331

RESUMO

One of the major challenges for harnessing the true potential of functional nano-machinery is integrating and transmitting motion with great precision. Molecular gearing systems enable the integration of multiple motions in a correlated fashion to translate motions from one locality to another and to change their speed and direction. However, currently no powerful methods exist to implement active driving of gearing motions at the molecular scale. Here we present a light-fuelled molecular gearing system and demonstrate its superiority over passive thermally activated gearing. Translation of a 180° rotation into a 120° rotation is achieved while at the same time the direction of the rotation axis is shifted by 120°. Within such photogearing processes, precise motions at the nanoscale can be changed in direction and decelerated in a manner similar to macroscopic bevel-gear operations in an energy consuming way-a necessary prerequisite to employ gearing as an active component in future mechanical nano-systems.


Assuntos
Rotação
16.
Angew Chem Int Ed Engl ; 61(19): e202201882, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35146857

RESUMO

Molecular motors transform external energy input into directional motions and offer exquisite precision for nano-scale manipulations. To make full use of molecular motor capacities, their directional motions need to be transmitted and used for powering downstream molecular events. Here we present a macrocyclic molecular motor structure able to perform repetitive molecular threading of a flexible tetraethylene glycol chain through the macrocycle. This mechanical threading event is actively powered by the motor and leads to a direct translation of the unidirectional motor rotation into unidirectional translation motion (chain versus ring). The mechanism of the active mechanical threading is elucidated and the actual threading step is identified as a combined helix inversion and threading event. The established molecular machine function resembles the crucial step of macroscopic weaving or sewing processes and therefore offers a first entry point to a "molecular knitting" counterpart.


Assuntos
Termodinâmica , Rotação
17.
J Am Chem Soc ; 144(7): 2847-2852, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157795

RESUMO

Molecular photoswitches that offer simultaneous precise control over geometrical and electronic changes are rare yet highly sought tools for the development of responsive nanosystems. Here we present such an advantageous combination of property control within a novel multiphotoswitch architecture. Hemithioindigo-based trioxobicyclononadiene (HTI-TOND) offers a rigid three-dimensional molecular structure that undergoes different exotic rearrangement reactions upon photochemical and thermal signaling. Three to four different states with distinct geometric and electronic properties can be accessed reversibly in high yields within this molecular framework. Thus, a highly promising and unique switching tool has become available to instill the next level of addressability at the smallest scales.

18.
J Am Chem Soc ; 144(7): 3029-3038, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157802

RESUMO

Typical photoswitches interconvert between two different states by simple isomerization reactions, which represents a fundamental limit for applications. To expand the switching capacity usually different photoswitches have to be linked together leading to strong increase in molecular weight, diminished switching function, and less precision and selectivity of switching events. Herein we present an approach for solving this essential problem with a different photoswitching concept. A basic molecular switch architecture provides precision photoswitching between eight different states via controlled rotations around three adjacent covalent bonds. All eight states can be populated one after another in an eight-step cycle by alternating between photochemical Hula-Twist isomerizations and thermal single-bond rotations. By simply changing solvent and temperature the same switch can also undergo a different cycle instead interconverting just five isomers in a selective sequence. This behavior is enabled through the discovery of an unprecedented photoreaction, a one-photon dual single-bond rotation.

19.
J Am Chem Soc ; 143(43): 18251-18260, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34665961

RESUMO

Red-light responsiveness of photoswitches is a highly desired property for many important application areas such as biology or material sciences. The main approach to elicit this property uses strategic substitution of long-known photoswitch motives such as azobenzenes or diarylethenes. Only very few photoswitches possess inherent red-light absorption of their core chromophore structures. Here, we present a strategy to convert the long-known purple indirubin dye into a prolific red-light-responsive photoswitch. In a supramolecular approach, its photochromism can be changed from a negative to a positive one, while at the same time, significantly higher yields of the metastable E-isomer are obtained upon irradiation. E- to Z-photoisomerization can then also be induced by red light of longer wavelengths. Indirubin therefore represents a unique example of reversible photoswitching using entirely red light for both switching directions.

20.
Chem Sci ; 12(10): 3651-3659, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-34163639

RESUMO

Introducing responsive elements into supramolecular recognition systems offers great advantages for the control of intermolecular interactions and represents an important stepping stone towards multi-purpose and reprogrammable synthetic systems. Of particular interest is implementation of light-responsiveness because of the unique ease and precision of this signal. Here we present visible light responsive hemithioindigo-based molecular tweezers that bear a highly polar sulfoxide function as an additional recognition unit inside their binding site. Sulfur oxidation allows to simultaneously enhance all crucial properties of this receptor type i.e. photoswitching capability, thermal stability of individual switching states, binding affinity, and binding modulation upon switching. With a novel titration method the thermodynamic binding parameters were determined using reduced sample amounts. Employing these strongly enhanced molecular tweezers allowed to demonstrate photocontrol of intermolecular charge transfer in a reversible manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...