Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Meas Tech ; 9(7): 3063-3093, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29619117

RESUMO

Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant in the Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.

2.
Environ Sci Technol ; 45(7): 2938-44, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21366216

RESUMO

Ozone plays a key role in both the Earth's radiative budget and photochemistry. Accurate, robust analytical techniques for measuring its atmospheric abundance are of critical importance. Cavity ring-down spectroscopy has been successfully used for sensitive and accurate measurements of many atmospheric species. However, this technique has not been used for atmospheric measurements of ozone, because the strongest ozone absorption bands occur in the ultraviolet spectral region, where Rayleigh and Mie scattering cause significant cavity losses and dielectric mirror reflectivities are limited. Here, we describe a compact instrument that measures O3 by chemical conversion to NO2 in excess NO, with subsequent detection by cavity ring-down spectroscopy. This method provides a simple, accurate, and high-precision measurement of atmospheric ozone. The instrument consists of two channels. The sum of NO2 and converted O3 (defined as Ox) is measured in the first channel, while NO2 alone is measured in the second channel. NO2 is directly detected in each channel by cavity ring-down spectroscopy with a laser diode light source at 404 nm. The limit of detection for O3 is 26 pptv (2 sigma precision) at 1 s time resolution. The accuracy of the measurement is ±2.2%, with the largest uncertainty being the effective NO2 absorption cross-section. The linear dynamic range of the instrument has been verified from the detection limit to above 200 ppbv (r2>99.99%). The observed precision on signal (2 sigma) with 41 ppbv O3 is 130 pptv in 1 s. Comparison of this instrument to UV absorbance instruments for ambient O3 concentrations shows linear agreement (r2=99.1%) with slope of 1.012±0.002.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental/instrumentação , Ozônio/análise , Absorção , Monitoramento Ambiental/métodos , Limite de Detecção , Dióxido de Nitrogênio/análise
3.
Science ; 311(5757): 67-70, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16400145

RESUMO

Nitrogen oxides in the lower troposphere catalyze the photochemical production of ozone (O3) pollution during the day but react to form nitric acid, oxidize hydrocarbons, and remove O3 at night. A key nocturnal reaction is the heterogeneous hydrolysis of dinitrogen pentoxide, N2O5. We report aircraft measurements of NO3 and N2O5, which show that the N2O5 uptake coefficient, g(N2O5), on aerosol particles is highly variable and depends strongly on aerosol composition, particularly sulfate content. The results have implications for the quantification of regional-scale O3 production and suggest a stronger interaction between anthropogenic sulfur and nitrogen oxide emissions than previously recognized.

4.
Diabetes Educ ; 15(5): 444-8, 1989.
Artigo em Inglês | MEDLINE | ID: mdl-2776640

RESUMO

Consumers and health care professionals expect blood glucose monitoring systems to consistently generate results that are close to actual blood glucose levels. Numerous environmental, physiologic, and operational factors can affect system performance, yielding results that are inaccurate or unpredictable. This study examined the effect of one factor--high altitude--on the performance of seven blood glucose monitoring systems. One of the systems overestimated blood glucose results; the other six systems underestimated blood glucose values (more than the expected variance). The findings of this study support previous reports of altered blood glucose monitoring system performance at high altitude. Diabetes educators can use this information when counseling consumers who reside or who plan to visit locations at high altitude.


Assuntos
Altitude , Automonitorização da Glicemia/normas , Diabetes Mellitus/sangue , Adolescente , Adulto , Glicemia/análise , Automonitorização da Glicemia/instrumentação , Acampamento , Criança , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...