Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Enzyme Microb Technol ; 173: 110373, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091836

RESUMO

Despite being one of the first enzymes discovered in 1883, the determination of laccase activity remains a scientific challenge, and a barrier to the full use of laccase as a biocatalyst. Indeed, laccase, an oxidase of the blue multi-copper oxidases family, has a wide range of substrates including substituted phenols, aromatic amines and lignin-related compounds. Its one-electron mechanism requires only oxygen and releases water as a reaction product. These characteristics make laccase a biocatalyst of interest in many fields of applications including pulp and paper industry, biorefineries, food, textile, and pharmaceutical industries. But to fully envisage the use of laccase at an industrial scale, its activity must be reliably quantifiable on complex substrates and in complex matrices. This review aims to describe current and emerging methods for laccase activity assays and place them in the context of a potential industrial use of the enzyme.


Assuntos
Lacase , Lignina , Lacase/química , Lignina/química
2.
Bioengineered ; 15(1): 2294160, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38131141

RESUMO

Microalgae are capable of generating numerous metabolites that possess notable biological activities and hold substantial promise for various industrial applications. Nevertheless, the taxonomic diversity of these photosynthetic microorganisms has not received thorough investigation. Using the 18S rRNA encoding gene, a recently discovered strain originating from the Tunisian coast (the governorate of Mahdia) was identified as a member of the Porphyridium genus. The growth response as well as the metabolite accumulation of Porphyridium sp. to different culture media (Pm, F/2, and Hemerick) was investigated over a period of 52 days. The highest biomass production was recorded with Pm medium (2 × 107 cell/mL). The apparent growth rates (µ) and the doubling time (Dt) were about 0.081 day-1 and 12.34 days, respectively. The highest chlorophyll a (0.678 ± 0.005 pg/cell), total carotenoids (0.18 ± 0.003 pg/cell), phycoerythrin (3.88 ± 0.003 pg/cell), and proteins (14.58 ± 0.35 pg/cell) contents were observed with F/2 medium. Cultivating Porphyridium sp. in both F/2 and Hemerick media yielded similar levels of starch accumulation. The Hemerick medium has proven to be the most suitable for the production of lipids (2.23% DW) and exopolysaccharides (5.41 ± 0.56 pg/cell).


Assuntos
Microalgas , Porphyridium , Porphyridium/genética , Porphyridium/metabolismo , Clorofila A/metabolismo , Amido , Fotossíntese , Biomassa , Microalgas/metabolismo
3.
Int J Biol Macromol ; 253(Pt 2): 126757, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37678695

RESUMO

Marine algae are the most abundant resource in the marine environment and are still a promising source of bioactive compounds including hydrocolloids. This study contributes to the evaluation of the biological and biotechnological potentials of two water soluble polysaccharides, namely alginates (AHS) and fucoidan (FHS), extracted and purified from Halopteris scoparia, an abundant Tunisian brown macroalgae collected in Tunisia (Tabarka region). The total sugars, neutral monosaccharides, uronic acids, proteins, polyphenols, and sulfate groups contents were quantified for both fractions, as well as their functional groups and primary structural features by Fourier transform infrared spectroscopy, ionic and/or gas chromatography and nuclear magnetic resonance analyses. AHS and FHS showed significant anti-inflammatory (IC50 ≈ 1 mg/mL), anticoagulant (e.g., 27-61.7 for the activated partial thromboplastin time), antihyperglycemic (0.1-40 µg/mL) and anti-trypsin (IC50 ≈ 0.3-0.4 mg/mL) effects. FHS and a hydrolyzed fraction showed a very promising potential against herpes viruses (HSV-1) (IC50 < 28 µg/mL). Besides, AHS and two hydrolyzed fractions were able to stimulate the natural defenses of tomato seedlings, assessing their elicitor capacity, by increasing the activity of phenylalanine ammonia-lyase (66-422 %) but also significantly changing the polyphenol content in the leaves (121-243 %) and roots (30-104 %) of tomato plants.


Assuntos
Phaeophyceae , Scoparia , Alga Marinha , Alga Marinha/química , Água/metabolismo , Polissacarídeos/química , Phaeophyceae/química
4.
Sci Rep ; 13(1): 13561, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604835

RESUMO

Cyanobacterial exopolysaccharides (EPS) are potential candidates for the production of sustainable biopolymers. Although the bioactive and physicochemical properties of cyanobacterial-based EPS are attractive, their commercial exploitation is limited by the high production costs. Bioprospecting and characterizing novel EPS-producing strains for industrially relevant conditions is key to facilitate their implementation in various biotechnological applications and fields. In the present work, we selected twenty-five Portuguese cyanobacterial strains from a diverse taxonomic range (including some genera studied for the first time) to be grown in diel light and temperature, simulating the Portuguese climate conditions, and evaluated their growth performance and proximal composition of macronutrients. Synechocystis and Cyanobium genera, from marine and freshwater origin, were highlighted as fast-growing (0.1-0.2 g L-1 day-1) with distinct biomass composition. Synechocystis sp. LEGE 07367 and Chroococcales cyanobacterium LEGE 19970, showed a production of 0.3 and 0.4 g L-1 of released polysaccharides (RPS). These were found to be glucan-based polymers with high molecular weight and a low number of monosaccharides than usually reported for cyanobacterial EPS. In addition, the absence of known cyanotoxins in these two RPS producers was also confirmed. This work provides the initial steps for the development of cyanobacterial EPS bioprocesses under the Portuguese climate.


Assuntos
Bioprospecção , Synechocystis , Portugal , Clima , Temperatura
5.
Bioengineered ; 14(1): 228-244, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37455672

RESUMO

Taken separately, a single sweet sorghum stem bioconversion process for bioethanol and biomethane production only leads to a partial conversion of organic matter. The direct fermentation of crushed whole stem coupled with the methanization of the subsequent solid residues in a two-stage process was experimented to improve energy bioconversion yield, efficiency, and profitability. The raw stalk calorific value was 17,144.17 kJ/kg DM. Fermentation step performed using Saccharomyces cerevisiae resulted in a bioconversion yield of 261.18 g Eth/kg DM, i.e. an energy recovery efficiency of 6921.27 kJ/kg DM. The methanogenic potentials were 279 and 256 LCH4/kg DM, respectively, for raw stem and fermentation residues, i.e. energy yields of 10,013.31 and 9187.84 kJ/kg DM, respectively. Coupling processes have significantly increased yield and made it possible to reach 13,309.57 kJ/kg DM, i.e. 77.63% of raw stem energy recovery yield, compared to 40.37% and 58.40%, respectively, for single fermentation and methanization processes.


Sweet sorghum stem is a viable feedstock source for efficient coproduction of ethanol and methaneSorghum stems calorific value determination revealed an energy potential of 17.15 MJ/kg DMEnergy recovery by single methanization yielded 18.03% more than ethanol fermentationCoupling processes has significantly increased energy recovery yield and profitability.


Assuntos
Sorghum , Fermentação , Sorghum/química , Etanol , Metano , Saccharomyces cerevisiae
6.
Molecules ; 28(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37375426

RESUMO

Here, we report work on developing an enzymatic process to improve the functionalities of industrial lignin. A kraft lignin sample prepared from marine pine was treated with the high-redox-potential laccase from the basidiomycete fungus Pycnoporus cinnabarinus at three different concentrations and pH conditions, and with and without the chemical mediator 1-hydroxybenzotriazole (HBT). Laccase activity was tested in the presence and absence of kraft lignin. The optimum pH of PciLac was initially 4.0 in the presence and absence of lignin, but at incubation times over 6 h, higher activities were found at pH 4.5 in the presence of lignin. Structural changes in lignin were investigated by Fourier-transform infrared spectroscopy (FTIR) with differential scanning calorimetry (DSC), and solvent-extractable fractions were analyzed using high-performance size-exclusion chromatography (HPSEC) and gas chromatography-mass spectrometry (GC-MS). The FTIR spectral data were analyzed with two successive multivariate series using principal component analysis (PCA) and ANOVA statistical analysis to identify the best conditions for the largest range of chemical modifications. DSC combined with modulated DSC (MDSC) revealed that the greatest effect on glass transition temperature (Tg) was obtained at 130 U g cm-1 and pH 4.5, with the laccase alone or combined with HBT. HPSEC data suggested that the laccase treatments led to concomitant phenomena of oligomerization and depolymerization, and GC-MS revealed that the reactivity of the extractable phenolic monomers depended on the conditions tested. This study demonstrates that P. cinnabarinus laccase can be used to modify marine pine kraft lignin, and that the set of analytical methods implemented here provides a valuable tool for screening enzymatic treatment conditions.


Assuntos
Lacase , Polyporaceae , Lacase/química , Lignina/química
7.
Mar Drugs ; 21(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37233495

RESUMO

Alginates extracted from two Moroccan brown seaweeds and their derivatives were investigated for their ability to induce phenolic metabolism in the roots and leaves of tomato seedlings. Sodium alginates (ALSM and ALCM) were extracted from the brown seaweeds Sargassum muticum and Cystoseira myriophylloides, respectively. Low-molecular-weight alginates (OASM and OACM) were obtained after radical hydrolysis of the native alginates. Elicitation was carried out by foliar spraying 20 mL of aqueous solutions (1 g/L) on 45-day-old tomato seedlings. Elicitor capacities were evaluated by monitoring phenylalanine ammonia-lyase (PAL) activity, polyphenols, and lignin production in the roots and leaves after 0, 12, 24, 48, and 72 h of treatment. The molecular weights (Mw) of the different fractions were 202 kDa for ALSM, 76 kDa for ALCM, 19 kDa for OACM, and 3 kDa for OASM. FTIR analysis revealed that the structures of OACM and OASM did not change after oxidative degradation of the native alginates. These molecules showed their differential capacity to induce natural defenses in tomato seedlings by increasing PAL activity and through the accumulation of polyphenol and lignin content in the leaves and roots. The oxidative alginates (OASM and OACM) exhibited an effective induction of the key enzyme of phenolic metabolism (PAL) compared to the alginate polymers (ALSM and ALCM). These results suggest that low-molecular-weight alginates may be good candidates for stimulating the natural defenses of plants.


Assuntos
Phaeophyceae , Sargassum , Alga Marinha , Sargassum/química , Alginatos/química , Lignina/farmacologia , Peso Molecular , Phaeophyceae/química , Alga Marinha/química , Estresse Oxidativo
8.
Polymers (Basel) ; 15(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37177323

RESUMO

Glucuronan is a polysaccharide composed of ß-(1,4)-linked d-glucuronic acids having intrinsic properties and biological activities recoverable in many fields of application. Currently, the description of Sinorhyzobium meliloti M5N1CS mutant bacterial strain as the sole source of glucuronan makes it relevant to the exploration of new microorganisms producing glucuronan. In this study, the Peteryoungia rosettifformans strain (Rhizobia), was identified as a wild producer of an exopolysaccharide (RhrBR46) related to glucuronan. Structural and biochemical features, using colorimetric assays, Fourier infrared spectroscopy, nuclear magnetic resonance, high pressure size exclusion chromatography coupled to multi-angle light laser scattering, and enzymatic assays allowed the characterization of a polyglucuronic acid, having a molecular mass (Mw¯) of 1.85 × 105 Da, and being partially O-acetylated at C-2 and/or C-3 positions. The concentration of Mg2+ ions in the cultivation medium has been shown to impact the structure of RhrBR46, by reducing drastically its Mw¯ (73%) and increasing its DA (10%). Comparative structural analyses between RhrBR46 and the glucuronan from Sinorhyzobium meliloti M5N1CS strain revealed differences in terms of molecular weight, degree of acetylation (DA), and the distribution of acetylation pattern. These structural divergences of RhrBR46 might contribute to singular properties or biological activities of RhrBR46, offering new perspectives of application.

9.
Mar Drugs ; 20(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35200618

RESUMO

In many African countries, the Bayoud is a common disease spread involving the fungus Fusarium oxusporum f. sp. albedinis (Foa). The induction of plant natural defenses through the use of seaweed polysaccharides to help plants against pathogens is currently a biological and ecological approach that is gaining more and more importance. In the present study, we used alginate, a natural polysaccharide extracted from a brown algae Bifurcaria bifurcata, to activate date palm defenses, which involve phenylalanine ammonia-lyase (PAL), a key enzyme of phenylpropanoid metabolism. The results obtained showed that at low concentration (1 g·L-1), alginate stimulated PAL activity in date palm roots 5 times more compared to the negative control (water-treated) after 24 h following treatment and 2.5 times more compared to the laminarin used as a positive stimulator of plant natural defenses (positive control of induction). Using qRT-PCR, the expression of a selection of genes involved in three different levels of defense mechanisms known to be involved in response to biotic stresses were investigated. The results showed that, generally, the PAL gene tested and the genes encoding enzymes involved in early oxidative events (SOD and LOX) were overexpressed in the alginate-treated plants compared to their levels in the positive and negative controls. POD and PR protein genes selected encoding ß-(1,3)-glucanases and chitinases in this study did not show any significant difference between treatments; suggesting that other genes encoding POD and PR proteins that were not selected may be involved. After 17 weeks following the inoculation of the plants with the pathogen Foa, treatment with alginate reduced the mortality rate by up to 80% compared to the rate in control plants (non-elicited) and plants pretreated with laminarin, which agrees with the induction of defense gene expression and the stimulation of natural defenses in date palm with alginate after 24 h. These results open promising prospects for the use of alginate in agriculture as an inducer that triggers immunity of plants against telluric pathogens in general and of date palm against Fusarium oxysporum f. sp. albedinis in particular.


Assuntos
Alginatos/farmacologia , Phaeophyceae/química , Phoeniceae/microbiologia , Doenças das Plantas/prevenção & controle , Alginatos/isolamento & purificação , Fusariose/prevenção & controle , Fusarium/isolamento & purificação , Regulação da Expressão Gênica de Plantas/genética , Glucanos/farmacologia , Lipoxigenase/metabolismo , Phoeniceae/genética , Doenças das Plantas/microbiologia , Metabolismo Secundário , Superóxido Dismutase/metabolismo
10.
Carbohydr Polym ; 277: 118820, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893237

RESUMO

In this present work, we developed a phenol grafted polyglucuronic acid (PGU) and investigated the usefulness in tissue engineering field by using this derivative as a bioink component allowing gelation in extrusion-based 3D bioprinting. The PGU derivative was obtained by conjugating with tyramine, and the aqueous solution of the derivative was curable through a horseradish peroxidase (HRP)-catalyzed reaction. From 2.0 w/v% solution of the derivative containing 5 U/mL HRP, hydrogel constructs were successfully obtained with a good shape fidelity to blueprints. Mouse fibroblasts and human hepatoma cells enclosed in the printed constructs showed about 95% viability the day after printing and survived for 11 days of study without a remarkable decrease in viability. These results demonstrate the great potential of the PGU derivative in tissue engineering field especially as an ink component of extrusion-based 3D bioprinting.


Assuntos
Bioimpressão , Ácido Glucurônico/química , Tinta , Polímeros/química , Animais , Linhagem Celular , Ácido Glucurônico/síntese química , Ácido Glucurônico/isolamento & purificação , Camundongos , Estrutura Molecular , Polímeros/síntese química , Polímeros/isolamento & purificação
11.
Parasitol Int ; 87: 102518, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34808329

RESUMO

Microsporidia are obligate intracellular pathogens capable of infecting a wide variety of hosts ranging from invertebrates to vertebrates. The infection process requires a step of prior adherence of Microsporidia to the surface of host cells. A few studies demonstrated the involvement of proteins containing a ricin-B lectin (RBL) domain in parasite infection. In this study Anncalia algerae and Encephalitozoon cuniculi genomes were screened by bioinformatic analysis to identify proteins with an extracellular prediction and possessing RBL-type carbohydrate-binding domains, being both potentially relevant factors contributing to host cell adherence. Three proteins named AaRBLL-1 and AaRBLL-2 from A. algerae and EcRBLL-1 from E. cuniculi, were selected and comparative analysis of sequences suggested their belonging to a multigenic family, with a conserved structural RBL domain despite a significant amino acid sequence divergence. The production of recombinant proteins and antibodies against the three proteins allowed their subcellular localization on the spore wall and/or the polar tube. Adherence inhibition assays based on pre-treatments with recombinant proteins or antibodies highlighted the significant decrease of the proliferation of both E. cuniculi and A. algerae, strongly suggesting that these proteins are involved in the infection process.


Assuntos
Encephalitozoon cuniculi/química , Proteínas Fúngicas/fisiologia , Microsporídios/química , Ricina/metabolismo , Animais , Linhagem Celular , Biologia Computacional , Cães , Encephalitozoon cuniculi/genética , Encephalitozoon cuniculi/imunologia , Humanos , Células Madin Darby de Rim Canino , Microsporídios/genética , Microsporídios/imunologia , Coelhos , Proteínas Recombinantes/genética , Esporos Fúngicos/imunologia , Esporos Fúngicos/isolamento & purificação
12.
Plants (Basel) ; 10(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34961129

RESUMO

The anti-inflammatory and antihyperglycemic effects of polysaccharides extracted from Alhagi maurorum Medik. seeds, spontaneous shrub collected in Southern of Algerian Sahara were investigated. Their water extraction followed by alcoholic precipitation was conducted to obtain two water-soluble polysaccharides extracts (WSPAM1 and WSPAM2). They were characterized using Fourier transform infrared, 1H/13C Nuclear Magnetic Resonance, Gas Chromatography-Mass Spectrometry and Size Exclusion Chromatography coupled with Multi-Angle Light Scattering. The capacity of those fractions to inhibit α-amylase activity and thermally induced Bovine Serum Albumin denaturation were also investigated. WSPAM1 and WSPAM2 were galactomannans with a mannose/galactose ratio of 2.2 and 2.4, respectively. The SEC-MALLS analysis revealed that WSPAM1 had a molecular weight of 1.4 × 106 Da. The investigations highlighted antinflammatory and antihyperglycemic effects in a dose-dependant manner of WSPAM1 and WSPAM2.

13.
Front Microbiol ; 11: 571067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013803

RESUMO

Brettanomyces bruxellensis is the main spoilage microbial agent in red wines. The use of fungal chitosan has been authorized since 2009 as a curative treatment to eliminate this yeast in conventional wines and in 2018 in organic wines. As this species is known to exhibit great genetic and phenotypic diversity, we examined whether all the strains responded the same way to chitosan treatment. A collection of 53 strains of B. bruxellensis was used. In the conditions of the reference test, all were at least temporarily affected by the addition of chitosan to wine, with significant decrease of cultivable population. Some (41%) were very sensitive and no cultivable yeast was detected in wine or lees after 3 days of treatment, while others (13%) were tolerant and, after a slight drop in cultivability, resumed growth between 3 and 10 days and remained able to produce spoilage compounds. There were also many strains with intermediate behavior. The strain behavior was only partially linked to the strain genetic group. This behavior was little modulated by the physiological state of the strain or the dose of chitosan used (within the limits of the authorized doses). On the other hand, for a given strain, the sensitivity to chitosan treatment was modulated by the chitosan used and by the properties of the wine in which the treatment was carried out.

14.
Mar Drugs ; 18(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086600

RESUMO

Polysaccharides extracted from marine algae have attracted much attention due to their biotechnological applications, including therapeutics, cosmetics, and mainly in agriculture and horticulture as biostimulants, biofertilizers, and stimulators of the natural defenses of plants. This study aimed to evaluate the ability of alginate isolated from Bifurcaria bifurcata from the Moroccan coast and oligoalginates derivatives to stimulate the natural defenses of tomato seedlings. Elicitation was carried out by the internodal injection of bioelicitor solutions. The elicitor capacities were evaluated by monitoring the activity of phenylalanine ammonia-lyase (PAL) as well as polyphenols content in the leaves located above the elicitation site for 5 days. Alginate and oligoalginates treatments triggered plant defense responses, which showed their capacity to significantly induce the PAL activity and phenolic compounds accumulation in the leaves of tomato seedlings. Elicitation by alginates and oligoalginates showed an intensive induction of PAL activity, increasing from 12 h of treatment and remaining at high levels throughout the period of treatment. The amount of polyphenols in the leaves was increased rapidly and strongly from 12 h of elicitation by both saccharide solutions, representing peaks value after 24 h of application. Oligoalginates exhibited an effective elicitor capacity in polyphenols accumulation compared to alginate polymers. The alginate and oligosaccharides derivatives revealed a similar elicitor capacity in PAL activity whereas the accumulation of phenolic compounds showed a differential effect. Polysaccharides extracted from the brown seaweed Bifurcaria bifurcate and oligosaccharides derivatives induced significantly the phenylpropanoid metabolism in tomato seedlings. These results contribute to the valorization of marine biomass as a potential bioresource for plant protection against phytopathogens in the context of eco-sustainable green technology.


Assuntos
Alginatos/farmacologia , Oligossacarídeos/farmacologia , Phaeophyceae/química , Substâncias Protetoras/farmacologia , Plântula/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Alginatos/química , Alginatos/isolamento & purificação , Marrocos , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Fenilalanina Amônia-Liase/análise , Fenilalanina Amônia-Liase/efeitos dos fármacos , Fenilalanina Amônia-Liase/isolamento & purificação , Folhas de Planta/química , Polifenóis/análise , Polifenóis/isolamento & purificação , Polifenóis/metabolismo , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Metabolismo Secundário , Plântula/química
15.
Life (Basel) ; 10(10)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049934

RESUMO

Bifunctional enzymes created by the fusion of a glucuronan lyase (TrGL) and a chitinase (ThCHIT42) from Trichoderma sp. have been constructed with the aim to validate a proof of concept regarding the potential of the chimera lyase/hydrolase by analyzing the functionality and the efficiency of the chimeric constructions compared to parental enzymes. All the chimeric enzymes, including or nor linker (GGGGS), were shown functional with activities equivalent or higher to native enzymes. The velocity of glucuronan lyase was considerably increased for chimeras, and may involved structural modifications at the active site. The fusion has induced a slightly decrease of the thermostability of glucuronan lyase, without modifying its catalytic activity regarding pH variations ranging from 5 to 8. The biochemical properties of chitinase seemed to be more disparate between the different fusion constructions suggesting an impact of the linkers or structural interactions with the linked glucuronan lyase. The chimeric enzymes displayed a decreased stability to temperature and pH variations, compared to parental one. Overall, TrGL-ThCHIT42 offered the better compromise in terms of biochemical stability and enhanced activity, and could be a promising candidate for further experiments in the field of fungi Cell Wall-Degrading Enzymes (CWDEs).

16.
Molecules ; 24(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775355

RESUMO

Microalgae and their metabolites have been an El Dorado since the turn of the 21st century. Many scientific works and industrial exploitations have thus been set up. These developments have often highlighted the need to intensify the processes for biomass production in photo-autotrophy and exploit all the microalgae value including ExoPolySaccharides (EPS). Indeed, the bottlenecks limiting the development of low value products from microalgae are not only linked to biology but also to biological engineering problems including harvesting, recycling of culture media, photoproduction, and biorefinery. Even respecting the so-called "Biorefinery Concept", few applications had a chance to emerge and survive on the market. Thus, exploiting EPS from microalgae for industrial applications in some low-value markets such as food is probably not a mature proposition considering the competitiveness of polysaccharides from terrestrial plants, macroalgae, and bacteria. However, it does not imply drawing a line on their uses but rather "thinking them" differently. This review provides insights into microalgae, EPS, and their exploitation. Perspectives on issues affecting the future of EPS microalgae are also addressed with a critical point of view.


Assuntos
Bioengenharia , Microalgas/química , Polissacarídeos/química , Biocombustíveis , Biomassa , Meios de Cultura , Humanos , Alga Marinha/química
17.
Biotechnol Adv ; 37(1): 193-222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30500354

RESUMO

Research on marine microalgae has been abundantly published and patented these last years leading to the production and/or the characterization of some biomolecules such as pigments, proteins, enzymes, biofuels, polyunsaturated fatty acids, enzymes and hydrocolloids. This literature focusing on metabolic pathways, structural characterization of biomolecules, taxonomy, optimization of culture conditions, biorefinery and downstream process is often optimistic considering the valorization of these biocompounds. However, the accumulation of knowledge associated with the development of processes and technologies for biomass production and its treatment has sometimes led to success in the commercial arena. In the history of the microalgae market, red marine microalgae are well positioned particularly for applications in the field of high value pigment and hydrocolloid productions. This review aims to establish the state of the art of the diversity of red marine microalgae, the advances in characterization of their metabolites and the developments of bioprocesses to produce this biomass.


Assuntos
Organismos Aquáticos/genética , Biocombustíveis , Biotecnologia/tendências , Microalgas/genética , Organismos Aquáticos/química , Biomassa , Enzimas/química , Enzimas/genética , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/genética , Redes e Vias Metabólicas/genética , Microalgas/química , Pigmentos Biológicos/química , Pigmentos Biológicos/genética
18.
Appl Biochem Biotechnol ; 185(3): 676-690, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29285675

RESUMO

The alpha-pinene oxide lyase (Prα-POL) from Pseudomonas rhodesiae CIP107491 belongs to catabolic alpha-pinene degradation pathway. In this study, the gene encoding Prα-POL has been identified using mapping approach combined to inverse PCR (iPCR) strategy. The Prα-POL gene included a 609-bp open reading frame encoding 202 amino acids and giving rise to a 23.7 kDa protein, with a theoretical isoelectric point (pI) of 5.23. The amino acids sequence analysis showed homologies with those of proteins with unknown function from GammaProteobacteria group. Identification of a conserved domain in amino acid in positions 18 to 190 permitted to classify Prα-POL among the nuclear transport factor 2 (NTF2) protein superfamily. Heterologous expression of Prα-POL, both under its native form and with a histidin tag, was successfully performed in Escherichia coli, and enzymatic kinetics were analyzed. Bioconversion assay using recombinant E. coli strain allowed to reach a rate of isonovalal production per gramme of biomass about 40-fold higher than the rate obtained with P. rhodesiae.


Assuntos
Aldeído Liases/genética , Clonagem Molecular , Escherichia coli/genética , Genes Bacterianos , Pseudomonas/enzimologia , Aldeído Liases/química , Aldeído Liases/metabolismo , Aldeídos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Biomassa , Ponto Isoelétrico , Cinética , Monoterpenos/metabolismo , Fases de Leitura Aberta , Reação em Cadeia da Polimerase/métodos , Pseudomonas/genética , Proteínas Recombinantes/genética
19.
Carbohydr Polym ; 165: 71-85, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363578

RESUMO

The oxidation of natural polysaccharides by TEMPO has become by now an "old chemical reaction" which led to numerous studies mainly conducted on cellulose. This regioselective oxidation of primary alcohol groups of neutral polysaccharides has generated a new class of polyuronides not identified before in nature, even if the discovery of enzymes promoting an analogous oxidation has been more recently reported. Around the same time, the scientific community discovered the surprising biological and techno-functional properties of these anionic macromolecules with a high potential of application in numerous industrial fields. The objective of this review is to establish the state of the art of TEMPO chemistry applied to polysaccharide oxidation, its history, the resulting products, their applications and the associated modifying enzymes.

20.
DNA Repair (Amst) ; 48: 8-16, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27793508

RESUMO

BACKGROUND: Poly-ADP ribosylation (PARylation) is a post translational modification, catalyzed by Poly(ADP-ribose)polymerase (PARP) family. In Drosophila, PARP-I (human PARP-1 ortholog) is considered to be the only enzymatically active isoform. PARylation is involved in various cellular processes such as DNA repair in case of base excision and strand-breaks. OBSERVATIONS: Strand-breaks (SSB and DSB) are detrimental to cell viability and, in Drosophila, that has a unique PARP family organization, little is known on PARP involvement in the control of strand-breaks repair process. In our study, strands-breaks (SSB and DSB) are chemically induced in S2 Drosophila cells using bleomycin. These breaks are efficiently repaired in S2 cells. During the bleomycin treatment, changes in PARylation levels are only detectable in a few cells, and an increase in PARP-I and PARP-II mRNAs is only observed during the recovery period. These results differ strongly from those obtained with Human cells, where PARylation is strongly activating when DNA breaks are generated. Finally, in PARP knock-down cells, DNA stability is altered but no change in strand-breaks repair can be observed. CONCLUSIONS: PARP responses in DNA strands-breaks context are functional in Drosophila model as demonstrated by PARP-I and PARP-II mRNA increases. However, no modification of the global PARylation profile is observed during strand-breaks generation, only changes at cellular levels are detectable. Taking together, these results demonstrate that PARylation process in Drosophila is tightly regulated in the context of strands-breaks repair and that PARP is essential during the maintenance of DNA integrity but dispensable in the DNA repair process.


Assuntos
Reparo do DNA , Proteínas de Drosophila/metabolismo , Macrófagos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Animais , Bleomicina/farmacologia , Linhagem Celular , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , DNA de Cadeia Simples/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...