Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(51): 36079-36087, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090071

RESUMO

In the last decade, organic-inorganic hybrid halide perovskite materials have developed into a very large research area in photovoltaics and optoelectronics as promising light harvesters. Lead-free double perovskites have recently been investigated as an environmentally friendly alternative to the lead-containing compositions. However, lead-free organic-inorganic hybrid halide double perovskites have so far rarely been produced due to a certain complexity in their synthesis. A number of small molecular cations have been investigated, but compositions containing azetidinium, which is a 4-membered heterocyclic molecular ring, on the A-site have hardly been considered. This study investigates the potential of [(CH2)3NH2]2AgBiBr6 as an optical absorber in photovoltaics or optoelectronics. The use of this alternative cation changes the crystal symmetry significantly. Columns of alternating metal cation form which are separated by the organic ions. While crystal symmetry is rather different from the perovskites, the overall properties as an absorber are similar. It is thus worthwhile to further investigate alternate hybrid compositions which form into other symmetries than the perovskite base structure.

2.
Nanotechnology ; 35(1)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37748475

RESUMO

Highly crystalline BiFeO3(BFO), Bi0.97Sm0.03FeO3(Sm-BFO) and BiFe0.97Co0.03O3(Co-BFO) nanoparticles (NPs) were utilized as potential magnetic hyperthermia agents at two different frequencies in the radiofrequency (RF) range, and the effect of Sm3+and Co2+ion doping on the physical properties of the material was examined. The thermal behaviour of the as-prepared powders disclosed that the crystallization temperature of the powders is affected by the incorporation of the dopants into the BFO lattice and the Curie transition temperature is decreased upon doping. Vibrational analysis confirmed the formation of the R3c phase in all compounds through the characteristic FT-IR absorbance bands assigned to O-Fe-O bending vibration and Fe-O stretching of the octahedral FeO6group in the perovskite, as well as through Raman spectroscopy. The shift of the Raman-active phonon modes in Sm-BFO and Co-BFO NPs indicated structural distortion of the BFO lattice, which resulted in increased local polarization and enhanced visible light absorption. The aqueous dispersion of Co-BFO NPs showed the highest magnetic hyperthermia performance at 30 mT/765 kHz, entering the therapeutic temperature window for cancer treatment, whereas the heating efficiency of all samples was increased with increasing frequency from 375 to 765 kHz, making our doped nanoparticles to be suitable candidates for potential biomedical applications.

3.
Front Bioeng Biotechnol ; 10: 965146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329706

RESUMO

Ionic engineering is exploited to substitute Bi cations in BiFe0.95Mn0.05O3 NPs (BFM) with rare-earth (RE) elements (Nd, Gd, and Dy). The sol-gel synthesized RE-NPs are tested for their magnetic hyperthermia potential. RE-dopants alter the morphology of BFM NPs from elliptical to rectangular to irregular hexagonal for Nd, Gd, and Dy doping, respectively. The RE-BFM NPs are ferroelectric and show larger piezoresponse than the pristine BFO NPs. There is an increase of the maximum magnetization at 300 K of BFM up to 550% by introducing Gd. In hyperthermia tests, 3 mg/ml dispersion of NPs in water and agar could increase the temperature of the dispersion up to ∼39°C under an applied AC magnetic field of 80 mT. Although Gd doping generates the highest increment in magnetization of BFM NPs, the Dy-BFM NPs show the best hyperthermia results. These findings show that RE-doped BFO NPs are promising for hyperthermia and other biomedical applications.

4.
Nanoscale Adv ; 3(20): 5830-5840, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36132682

RESUMO

The escalated photocatalytic (PC) efficiency of the visible light absorber Ba-doped BiFe0.95Mn0.05O3 (BFM) nanoparticles (NPs) as compared to BiFeO3 (BFO) NPs is reported for the degradation of the organic pollutants rhodamine B and methyl orange. 1 mol% Ba-doped-BFM NPs degrade both dyes within 60 and 25 minutes under UV + visible illumination, respectively. The Ba and Mn co-doping up to 5 mol% in BFO NPs increases the specific surface area, energy of d-d transitions, and PC efficiency of the BFO NPs. The maximum PC efficiency found in 1 mol% Ba doped BFM NPs is attributed to a cooperative effect of factors like its increased light absorption ability, large surface area, active surface, reduced recombination of charge carriers, and spontaneous polarization to induce charge carrier separation. The 1 mol% Ba and 5 mol% Mn co-incorporation is found to be the optimum dopant concentration for photocatalytic applications. These properties of co-doped BFO NPs can, e.g., be exploited in the field of water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...