Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732080

RESUMO

Endothelial progenitor cells (EPCs) play a critical role in cardiovascular regeneration. Enhancement of their native properties would be highly beneficial to ensuring the proper functioning of the cardiovascular system. As androgens have a positive effect on the cardiovascular system, we hypothesized that dihydrotestosterone (DHT) could also influence EPC-mediated repair processes. To evaluate this hypothesis, we investigated the effects of DHT on cultured human EPCs' proliferation, viability, morphology, migration, angiogenesis, gene and protein expression, and ability to integrate into cardiac tissue. The results showed that DHT at different concentrations had no cytotoxic effect on EPCs, significantly enhanced the cell proliferation and viability and induces fast, androgen-receptor-dependent formation of capillary-like structures. DHT treatment of EPCs regulated gene expression of androgen receptors and the genes and proteins involved in cell migration and angiogenesis. Importantly, DHT stimulation promoted EPC migration and the cells' ability to adhere and integrate into murine cardiac slices, suggesting it has a role in promoting tissue regeneration. Mass spectrometry analysis further highlighted the impact of DHT on EPCs' functioning. In conclusion, DHT increases the proliferation, migration, and androgen-receptor-dependent angiogenesis of EPCs; enhances the cells' secretion of key factors involved in angiogenesis; and significantly potentiates cellular integration into heart tissue. The data offer support for potential therapeutic applications of DHT in cardiovascular regeneration and repair processes.


Assuntos
Movimento Celular , Proliferação de Células , Di-Hidrotestosterona , Células Progenitoras Endoteliais , Neovascularização Fisiológica , Receptores Androgênicos , Di-Hidrotestosterona/farmacologia , Humanos , Movimento Celular/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/citologia , Animais , Células Cultivadas , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Androgênios/farmacologia , Androgênios/metabolismo , Masculino
2.
Cells ; 12(3)2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36766731

RESUMO

MicroRNA 193a-3p (miR193a-3p) is a short non-coding RNA with tumor suppressor properties. Breast cancer (BC) progression is governed by active interaction between breast cancer cells, vascular (V)/lymphatic (L) endothelial cells (ECs), and BC secretome. We have recently shown that miR193a-3p, a tumor suppressor miRNA, inhibits MCF-7 BC cell-driven growth of VECs via direct antimitogenic actions and alters MCF-7 secretome. Since LEC-BC cross-talk plays a key role in BC progression, we investigated the effects of miR193a-3p on MCF-7 secretome and estradiol-mediated growth effects in LECs and LEC + MCF-7 spheroids, and delineated the underlying mechanisms. Transfection of LECs with miR193a-3p, as well as secretome from MCF-7 transfected cells, inhibited LEC growth, and these effects were mimicked in LEC + MCF-7 spheroids. Moreover, miR193a-3p inhibited ERK1/2 and Akt phosphorylation in LECs and LEC + MCF-7 spheroids, which are importantly involved in promoting cancer development and metastasis. Treatment of LECs and LEC + MCF-7 spheroids with estradiol (E2)-induced growth, as well as ERK1/2 and Akt phosphorylation, and was abrogated by miR193a-3p and secretome from MCF-7 transfected cells. Gene expression analysis (GEA) in LEC + MCF-7 spheroids transfected with miR193a-3p showed significant upregulation of 54 genes and downregulation of 73 genes. Pathway enrichment analysis of regulated genes showed significant modulation of several pathways, including interferon, interleukin/cytokine-mediated signaling, innate immune system, ERK1/2 cascade, apoptosis, and estrogen receptor signaling. Transcriptomic analysis showed downregulation in interferon and anti-apoptotic and pro-growth molecules, such as IFI6, IFIT1, OSA1/2, IFITM1, HLA-A/B, PSMB8/9, and PARP9, which are known to regulate BC progression. The cytokine proteome array of miR193a-3p transfected MCF secretome and confirmed the upregulation of several growth inhibitory cytokines, including IFNγ, Il-1a, IL-1ra, IL-32, IL-33, IL-24, IL-27, cystatin, C-reactive protein, Fas ligand, MIG, and sTIM3. Moreover, miR193a-3p alters factors in MCF-7 secretome, which represses ERK1/2 and Akt phosphorylation, induces pro-apoptotic protein and apoptosis in LECs, and downregulates interferon-associated proteins known to promote cancer growth and metastasis. In conclusion, miR193a-3p can potentially modify the tumor microenvironment by altering pro-growth BC secretome and inhibiting LEC growth, and may represent a therapeutic molecule to target breast tumors/cancer.


Assuntos
Neoplasias da Mama , Transcriptoma , Feminino , Humanos , Neoplasias da Mama/patologia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Perfilação da Expressão Gênica , Interferons/metabolismo , Células MCF-7 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Secretoma , Microambiente Tumoral
3.
Cells ; 11(19)2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230929

RESUMO

Breast cancer (BC) cell secretome in the tumor microenvironment (TME) facilitates neo-angiogenesis by promoting vascular endothelial cell (VEC) growth. Drugs that block BC cell growth or angiogenesis can restrict tumor growth and are of clinical relevance. Molecules that can target both BC cell and VEC growth as well as BC secretome may be more effective in treating BC. Since small non-coding microRNAs (miRs) regulate cell growth and miR193a-3p has onco-suppressor activity, we investigated whether miR193a-3p inhibits MCF-7-driven growth (proliferation, migration, capillary formation, signal transduction) of VECs. Using BC cells and VECs grown in monolayers or 3D spheroids and gene microarrays, we demonstrate that: pro-growth effects of MCF-7 and MDA-MB231 conditioned medium (CM) are lost in CM collected from MCF-7/MDA-MB231 cells pre-transfected with miR193a-3p (miR193a-CM). Moreover, miR193a-CM inhibited MAPK and Akt phosphorylation in VECs. In microarray gene expression studies, miR193a-CM upregulated 553 genes and downregulated 543 genes in VECs. Transcriptomic and pathway enrichment analysis of differentially regulated genes revealed downregulation of interferon-associated genes and pathways that induce angiogenesis and BC/tumor growth. An angiogenesis proteome array confirmed the downregulation of 20 pro-angiogenesis proteins by miR193a-CM in VECs. Additionally, in MCF-7 cells and VECs, estradiol (E2) downregulated miR193a-3p expression and induced growth. Ectopic expression of miR193a-3p abrogated the growth stimulatory effects of estradiol E2 and serum in MCF-7 cells and VECs, as well as in MCF-7 and MCF-7+VEC 3D spheroids. Immunostaining of MCF-7+VEC spheroid sections with ki67 showed miR193a-3p inhibits cell proliferation. Taken together, our findings provide first evidence that miR193a-3p abrogates MCF-7-driven growth of VECs by altering MCF-7 secretome and downregulating pro-growth interferon signals and proangiogenic proteins. Additionally, miR193a-3p inhibits serum and E2-induced growth of MCF-7, VECs, and MCF-7+VEC spheroids. In conclusion, miRNA193a-3p can potentially target/inhibit BC tumor angiogenesis via a dual mechanism: (1) altering proangiogenic BC secretome/TME and (2) inhibiting VEC growth. It may represent a therapeutic molecule to target breast tumor growth.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/patologia , Proliferação de Células/genética , Meios de Cultivo Condicionados/metabolismo , Células Endoteliais/metabolismo , Estradiol/metabolismo , Feminino , Humanos , Interferons/metabolismo , Antígeno Ki-67/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Secretoma , Transcriptoma/genética , Microambiente Tumoral
4.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806196

RESUMO

Vascular and lymphatic vessels drive breast cancer (BC) growth and metastasis. We assessed the cell growth (proliferation, migration, and capillary formation), gene-, and protein-expression profiles of Vascular Endothelial Cells (VECs) and Lymphatic Endothelial Cells (LECs) exposed to a conditioned medium (CM) from estrogen receptor-positive BC cells (MCF-7) in the presence or absence of Estradiol. We demonstrated that MCF-7-CM stimulated growth and capillary formation in VECs but inhibited LEC growth. Consistently, MCF-7-CM induced ERK1/2 and Akt phosphorylation in VECs and inhibited them in LECs. Gene expression analysis revealed that the LECs were overall (≈10-fold) more sensitive to MCF-7-CM exposure than VECs. Growth/angiogenesis and cell cycle pathways were upregulated in VECs but downregulated in LECs. An angiogenesis proteome array confirmed the upregulation of 23 pro-angiogenesis proteins in VECs. In LECs, the expression of genes related to ATP synthesis and the ATP content were reduced by MCF-7-CM, whereas MTHFD2 gene, involved in folate metabolism and immune evasion, was upregulated. The contrasting effect of MCF-7-CM on the growth of VECs and LECs was reversed by inhibiting the TGF-ß signaling pathway. The effect of MCF-7-CM on VEC growth was also reversed by inhibiting the VEGF signaling pathway. In conclusion, BC secretome may facilitate cancer cell survival and tumor growth by simultaneously promoting vascular angiogenesis and inhibiting lymphatic growth. The differential effects of BC secretome on LECs and VECs may be of pathophysiological relevance in BC.


Assuntos
Neoplasias da Mama , Células Endoteliais , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Linfangiogênese/genética , Células MCF-7 , Neovascularização Patológica/metabolismo , Secretoma , Transcriptoma
5.
Cells ; 10(9)2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34571963

RESUMO

Stroke is the third leading cause of mortality in women and it kills twice as many women as breast cancer. A key role in the pathophysiology of stroke plays the disruption of the blood-brain barrier (BBB) within the neurovascular unit. While estrogen induces vascular protective actions, its influence on stroke remains unclear. Moreover, experiments assessing its impact on endothelial cells to induce barrier integrity are non-conclusive. Since pericytes play an active role in regulating BBB integrity and function, we hypothesize that estradiol may influence BBB by regulating their activity. In this study using human brain vascular pericytes (HBVPs) we investigated the impact of estradiol on key pericyte functions known to influence BBB integrity. HBVPs expressed estrogen receptors (ER-α, ER-ß and GPER) and treatment with estradiol (10 nM) inhibited basal cell migration but not proliferation. Since pericyte migration is a hallmark for BBB disruption following injury, infection and inflammation, we investigated the effects of estradiol on TNFα-induced PC migration. Importantly, estradiol prevented TNFα-induced pericyte migration and this effect was mimicked by PPT (ER-α agonist) and DPN (ER-ß agonist), but not by G1 (GPR30 agonist). The modulatory effects of estradiol were abrogated by MPP and PHTPP, selective ER-α and ER-ß antagonists, respectively, confirming the role of ER-α and ER-ß in mediating the anti-migratory actions of estrogen. To delineate the intracellular mechanisms mediating the inhibitory actions of estradiol on PC migration, we investigated the role of AKT and MAPK activation. While estradiol consistently reduced the TNFα-induced MAPK and Akt phosphorylation, only the inhibition of MAPK, but not Akt, significantly abrogated the migratory actions of TNFα. In transendothelial electrical resistance measurements, estradiol induced barrier function (TEER) in human brain microvascular endothelial cells co-cultured with pericytes, but not in HBMECs cultured alone. Importantly, transcriptomics analysis of genes modulated by estradiol in pericytes showed downregulation of genes known to increase cell migration and upregulation of genes known to inhibit cell migration. Taken together, our findings provide the first evidence that estradiol modulates pericyte activity and thereby improves endothelial integrity.


Assuntos
Encéfalo/irrigação sanguínea , Movimento Celular/efeitos dos fármacos , Estradiol/farmacologia , Perfilação da Expressão Gênica , Pericitos/citologia , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Cells ; 10(9)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34571830

RESUMO

Therapeutic use of mesenchymal stem cells (MSCs) for tissue repair has great potential. MSCs from multiple sources, including those derived from human umbilical matrix, namely Wharton's jelly, may serve as a resource for obtaining MSCs. However, low in vivo engraftment efficacy of MSCs remains a challenging limitation. To improve clinical outcomes using MSCs, an in-depth understanding of the mechanisms and factors involved in successful engraftment is required. We recently demonstrated that 17ß-estradiol (E2) improves MSCs in vitro proliferation, directed migration and engraftment in murine heart slices. Here, using a proteomics approach, we investigated the angiogenic potential of MSCs in vivo and the modulatory actions of E2 on mechanisms involved in tissue repair. Specifically, using a Matrigel® plug assay, we evaluated the effects of E2 on MSCs-induced angiogenesis in ovariectomized (OVX) mice. Moreover, using proteomics we investigated the potential pro-repair processes, pathways, and co-mechanisms possibly modified by the treatment of MSCs with E2. Using RT-qPCR, we evaluated mRNA expression of pro-angiogenic molecules, including endoglin, Tie-2, ANG, and VEGF. Hemoglobin levels, a marker for blood vessel formation, were increased in plugs treated with E2 + MSCs, suggesting increased capillary formation. This conclusion was confirmed by the histological analysis of capillary numbers in the Matrigel® plugs treated with E2 + MSC. The LC-MS screening of proteins obtained from the excised Matrigel® plugs revealed 71 proteins that were significantly altered following E2 exposure, 57 up-regulated proteins and 14 down-regulated proteins. A major result was the association of over 100 microRNA molecules (miRNAs) involved in cellular communication, vesicle transport, and metabolic and energy processes, and the high percentage of approximately 25% of genes involved in unknown biological processes. Together, these data provide evidence for increased angiogenesis by MSCs treated with the sex hormone E2. In conclusion, E2 treatment may increase the engraftment and repair potential of MSCs into tissue, and may promote MSC-induced angiogenesis after tissue injury.


Assuntos
Estrogênios/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Estradiol/metabolismo , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteômica/métodos , Geleia de Wharton/metabolismo
7.
Cells ; 10(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34359953

RESUMO

Many pathological conditions of the brain are associated with structural abnormalities within the neurovascular system and linked to pericyte (PC) loss and/or dysfunction. Since crosstalk between endothelial cells (ECs) and PCs greatly impacts the function of the blood-brain barrier (BBB), effects of PCs on endothelial integrity and function have been investigated extensively. However, the impact of ECs on the function and activity of PCs remains largely unknown. Hence, using co-cultures of human brain vascular PCs with human cerebral microvascular ECs on opposite sides of porous Transwell inserts which facilitates direct EC-PC contact and improves EC barrier function, we analyzed EC-driven transcriptomic changes in PCs using microarrays and changes in cytokines/chemokines using proteome arrays. Gene expression analysis (GEA) in PCs co-cultured with ECs versus PCs cultured alone showed significant upregulation of 1'334 genes and downregulation of 964 genes. GEA in co-cultured PCs revealed increased expression of five prominent PC markers as well as soluble factors, such as transforming growth factor beta, fibroblast growth factor, angiopoietin 1, brain-derived neurotrophic factor, all of which are involved in EC-PC crosstalk and BBB induction. Pathway enrichment analysis of modulated genes showed a strong impact on many inflammatory and extracellular matrix (ECM) pathways including interferon and interleukin signaling, TGF-ß and interleukin-1 regulation of ECM, as well as on the mRNA processing pathway. Interestingly, while co-culture induced the mRNA expression of many chemokines and cytokines, including several CCL- and CXC-motif ligands and interleukins, we observed a decreased expression of the same inflammatory mediators on the protein level. Importantly, in PCs, ECs significantly induced interferon associated proteins (IFIT1, IFI44L, IF127, IFIT3, IFI6, IFI44) with anti-viral actions; downregulated prostaglandin E receptor 2 (prevent COX-2 mediated BBB damage); upregulated fibulin-3 and connective tissue growth factor essential for BBB integrity; and multiple ECMs (collagens and integrins) that inhibit cell migration. Our findings suggest that via direct contact, ECs prime PCs to induce molecules to promote BBB integrity and cell survival during infection and inflammatory insult. Taken together, we provide first evidence that interaction with ECs though porous membranes induces major changes in the transcriptomic and proteomic profile of PCs. ECs influence genes involved in diverse aspects of PC function including PC maturation, cell survival, anti-viral defense, blood flow regulation, immuno-modulation and ECM deposition.


Assuntos
Encéfalo/metabolismo , Movimento Celular/fisiologia , Células Endoteliais/metabolismo , Pericitos/citologia , Transporte Biológico/fisiologia , Endotélio Vascular/metabolismo , Humanos
8.
J Vis Exp ; (173)2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34309602

RESUMO

Breast cancer is the leading cause of mortality in women. The growth of breast cancer cells and their subsequent metastasis is a key factor for its progression. Although the mechanisms involved in promoting breast cancer growth have been intensively studied using monocultures of breast cancer cells such as MCF-7 cells, the contribution of other cell types, such as vascular and lymphatic endothelial cells that are intimately involved in tumor growth, has not been investigated in depth. Cell-cell interaction plays a key role in tumor growth and progression. Neoangiogenesis, or the development of vessels, is essential for tumor growth, whereas the lymphatic system serves as a portal for cancer cell migration and subsequent metastasis. Recent studies provide evidence that vascular and lymphatic endothelial cells can significantly influence cancer cell growth. These observations imply a need for developing in vitro models that would more realistically reflect breast cancer growth processes in vivo. Moreover, restrictions in animal research require the development of ex vivo models to elucidate better the mechanisms involved. This article describes the development of breast cancer spheroids composed of both breast cancer cells (estrogen receptor-positive MCF-7 cells) and vascular and/or lymphatic endothelial cells. The protocol describes a detailed step-by-step approach in creating dual-cell spheroids using two different approaches, hanging drop (gold standard and cheap) and 96-well U-bottom plates (expensive). In-depth instructions are provided for how to delicately pick up the formed spheroids to monitor growth by microscopic sizing and assessing viability using dead and live cell staining. Moreover, procedures to fix the spheroids for sectioning and staining with growth-specific antibodies to differentiate growth patterns in spheroids are delineated. Additionally, details for preparing spheroids with transfected cells and methods to extract RNA for molecular analysis are provided. In conclusion, this article provides in-depth instructions for preparing multi-cell spheroids for breast cancer research.


Assuntos
Neoplasias da Mama , Animais , Mama , Células Endoteliais , Feminino , Humanos , Neovascularização Patológica , Esferoides Celulares
9.
Cells ; 10(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069403

RESUMO

Autocrine/paracrine factors generated in response to 17ß-estradiol (E2) within the fallopian tube (FT) facilitate fertilization and early embryo development for implantation. Since cyclic AMP (cAMP) plays a key role in reproduction, regulation of its synthesis by E2 may be of biological/pathophysiological relevance. Herein, we investigated whether cAMP production in FT cells (FTCs) is regulated by E2 and environmental estrogens (EE's; xenoestrogens and phytoestrogens). Under basal conditions, low levels of extracellular cAMP were detectable in bovine FTCs (epithelial cells and fibroblasts; 1:1 ratio). Treatment of FTCs with forskolin (AC; adenylyl cyclase activator), isoproterenol (ß-adrenoceptor agonist) and IBMX (phosphodiesterase (PDE) inhibitor) dramatically (>10 fold) increased cAMP; whereas LRE1 (sAC; soluble AC inhibitor) and 2',5'-dideoxyadenosine (DDA; transmembrane AC (tmAC)) inhibitor decreased cAMP. Comparable changes in basal and stimulated intracellular cAMP were also observed. Ro-20-1724 (PDE-IV inhibitor), but not milrinone (PDE-III inhibitor) nor mmIBMX (PDE-I inhibitor), augmented forskolin-stimulated cAMP levels, suggesting that PDE-IV dominates in FTCs. E2 increased cAMP levels and CREB phosphorylation in FTCs, and these effects were mimicked by EE's (genistein, 4-hydroxy-2',4',6'-trichlorobiphenyl, 4-hydroxy-2',4',6'-dichlorobiphenyl). Moreover, the effects of E2 and EE were blocked by the tmAC inhibitor DDA, but not by the ERα/ß antagonist ICI182780. Moreover, BAPTA-AM (intracellular-Ca2+ chelator) abrogated the effects of E2, but not genistein, on cAMP suggesting differential involvement of Ca2+. Treatment with non-permeable E2-BSA induced cAMP levels and CREB-phosphorylation; moreover, the stimulatory effects of E2 and EEs on cAMP were blocked by G15, a G protein-coupled estrogen receptor (GPER) antagonist. E2 and IBMX induced cAMP formation was inhibited by LRE1 and DDA suggesting involvement of both tmAC and sAC. Our results provide the first evidence that in FTCs, E2 and EE's stimulate cAMP synthesis via GPER. Exposure of the FT to EE's and PDE inhibitors may result in abnormal non-cyclic induction of cAMP levels which may induce deleterious effects on reproduction.


Assuntos
AMP Cíclico/metabolismo , Disruptores Endócrinos/farmacologia , Células Epiteliais/efeitos dos fármacos , Estrogênios/farmacologia , Tubas Uterinas/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Animais , Bovinos , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Estradiol/farmacologia , Tubas Uterinas/citologia , Tubas Uterinas/metabolismo , Feminino , Fibroblastos/metabolismo , Genisteína/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Fosforilação , Bifenilos Policlorados/farmacologia , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
10.
Cells ; 10(4)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924251

RESUMO

Pericytes facilitate blood-brain barrier (BBB) integrity; however, the mechanisms involved remain unclear. Hence, using co-cultures of human cerebral microvascular endothelial cells (ECs) and vascular pericytes (PCs) in different spatial arrangements, as well as PC conditioned media, we investigated the impact of PC-EC orientation and PC-derived soluble factors on EC barrier function. We provide the first evidence that barrier-inducing properties of PCs require basolateral contact with ECs. Gene expression analysis (GEA) in ECs co-cultured with PCs versus ECs alone showed significant upregulation of 38 genes and downregulation of 122 genes. Pathway enrichment analysis of modulated genes showed significant regulation of several pathways, including transforming growth factor-ß and interleukin-1 regulated extracellular matrix, interferon and interleukin signaling, immune system signaling, receptor of advanced glycation end products (RAGE), and cytokine-cytokine receptor interaction. Transcriptomic analysis showed a reduction in molecules such as pro-inflammatory cytokines and chemokines, which are known to be induced during BBB disruption. Moreover, cytokine proteome array confirmed the downregulation of key pro-inflammatory cytokines and chemokines on the protein level. Other molecules which influence BBB and were favorably modulated upon EC-PC co-culture include IL-18 binding protein, kallikrein-3, CSF2 CSF3, CXCL10, CXCL11 (downregulated) and IL-1-R4; HGF, PDGF-AB/BB, PECAM, SERPIN E1 (upregulated). In conclusion, we provide the first evidence that (1) basolateral contact between ECs and PCs is essential for EC barrier function and integrity; (2) in ECs co-cultured with PCs, the profile of BBB disrupting pro-inflammatory molecules and cytokines/chemokines is downregulated; (3) PCs significantly modulate EC mechanisms known to improve barrier function, including TGF-ß regulated ECM pathway, anti-inflammatory cytokines, growth factors and matrix proteins. This human PC-EC co-culture may serve as a viable in vitro model for investigating BBB function and drug transport.


Assuntos
Encéfalo/irrigação sanguínea , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Microvasos/citologia , Pericitos/citologia , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pericitos/efeitos dos fármacos , Pericitos/metabolismo
11.
Hypertension ; 75(1): 109-118, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786976

RESUMO

c-Kit+ progenitor smooth muscle cells (P-SMCs) can develop into SMCs that contribute to injury-induced neointimal thickening. Here, we investigated whether adenosine reduces P-SMC migration and proliferation and whether this contributes to adenosine's inhibitory actions on neointima formation. In human P-SMCs, 2-chloroadenosine (stable adenosine analogue) and BAY60-6583 (A2B agonist) inhibited P-SMC proliferation and migration. Likewise, increasing endogenous adenosine by blocking adenosine metabolism with erythro-9-(2-hydroxy-3-nonyl) adenine (inhibits adenosine deaminase) and 5-iodotubercidin (inhibits adenosine kinase) attenuated P-SMC proliferation and migration. Neither N6-cyclopentyladenosine (A1 agonist), CGS21680 (A2A agonist), nor N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (A3 agonist) affected P-SMC proliferation or migration. 2-Chloroadenosine increased cyclic AMP, reduced Akt phosphorylation (activates cyclin D expression), and reduced levels of cyclin D1 (promotes cell-cycle progression). Moreover, 2-chloroadenosine inhibited expression of Skp2 (promotes proteolysis of p27Kip1) and upregulated levels of p27Kip1 (negative cell-cycle regulator). A2B receptor knockdown prevented the effects of 2-chloroadenosine on cyclic AMP production and P-SMC proliferation and migration. Likewise, inhibition of adenylyl cyclase and protein kinase A rescued P-SMCs from the inhibitory effects of 2-chloroadenosine. The inhibitory effects of adenosine were similar in male and female P-SMCs. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 µmol/L for 7 days) reduced neointimal hyperplasia by 64.5% (P<0.05; intima/media ratio: control, 1.4±0.02; treated, 0.53±0.012) and reduced neointimal c-Kit+ cells. Adenosine inhibits P-SMC migration and proliferation via the A2B receptor/cyclic AMP/protein kinase A axis, which reduces cyclin D1 expression and activity via inhibiting Akt phosphorylation and Skp2 expression and upregulating p27kip1 levels. Adenosine attenuates neointima formation in part by inhibiting infiltration and proliferation of c-Kit+ P-SMCs.


Assuntos
2-Cloroadenosina/farmacologia , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Receptor A2B de Adenosina/metabolismo , Adenina/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Aminopiridinas/farmacologia , Movimento Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Fenetilaminas/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
J Mol Cell Cardiol ; 133: 115-124, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31201797

RESUMO

Scarcity of gender specific donor hearts highlights the importance of mesenchymal stem cells (MSCs) as a therapeutic tool for heart repair. However, inefficient incorporation, retention, and activity of MSCs in cardiac tissue remain an obstacle. Since surges in follicular estradiol (E2; µmolar-range) trigger tissue remodeling (e.g. ovulation) and E2 exerts beneficial actions on the cardiovascular system, we hypothesized that E2 may promote/improve MSC-mediated cardiac repair processes. Using Wharton's jelly (WJ)-derived MSCs we assessed the effects of E2 on MSC proliferation, directed migration, and engraftment in murine heart slices (using xCELLigence real-time cell-impedance system, DNA quantification, and microscopy) and on MSC-induced angiogenesis in vivo (matrigel plug assay). Protein expression was assessed by Western blotting, ELISA/Luminex, and proteomic analysis; whereas mRNA expression was assessed by qRT-PCR. MSCs expressed estrogen receptors (ERs) -alpha and -beta. E2 promoted MSC proliferation and up-regulated mRNA and protein expression of ER-alpha, ER-beta, extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinase (MMP) -9, yet down-regulated MMP-2 expression. Moreover, E2 up-regulated expression of vascular endothelial growth factor (VEGF)-A, VEGFR-2, vascular cell adhesion protein-1 (VCAM-1), and angiogenin (ANG) and stimulated nitric oxide (NO) production via ER. Proteomic analysis of MSCs showed that E2 up-regulated 47 proteins, down-regulated 7 proteins, and increased the expression of key biochemical components/pathways involved in tissue repair. In MSCs co-cultured with murine heart-slices, E2 significantly induced MSC migration in an ER-alpha-dependent fashion and significantly increased the secretion of MMP-2, MMP-9, ANG, and VEGF. In an in vivo matrigel assay, E2-treated MSCs increased angiogenesis and hemoglobin content. In conclusion, E2-treatment increases the incorporation of MSCs in heart slices and promotes MSC-induced angiogenesis. These beneficial effects are mediated via increases in molecules/pathways involved in tissue remodeling and angiogenesis. We speculate that E2 may enhance MSC ability to repair/regenerate cardiac tissue.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Estradiol/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/genética , Proteômica/métodos
13.
J Mol Endocrinol ; 60(1): 1-15, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29247133

RESUMO

The use of mesenchymal stem cells (MSC) as a therapeutic tool in cardiovascular diseases is promising. Since androgens exert some beneficial actions on the cardiovascular system, we tested our hypothesis that this hormone could promote MSC-mediated repair processes, also. Cultured MSCs isolated from Wharton's jelly were exposed to 30 nM dihydrotestosterone (DHT) for 1 or 4 days and the effects of the hormone on their growth/migration/adhesion and the underlying mechanisms were assessed. Results were obtained by real-time cell impedance measurements, and DNA quantification showed that DHT increased MSC proliferation by ~30%. As determined by xCELLigence system, DHT augmented (~2 folds) the migration of MSC toward cardiac tissue slices (at 12 h), and this effect was blocked by flutamide, an androgen receptor (AR) antagonist. Exposure of cells to DHT, upregulated the gene and protein expression of AR, EMMPRIN and MMP-9 and downregulated the expression of MMP-2 DHT significantly induced the release of nitric oxide by MSC (≥2-fold) and flutamide blocked this effect. When MSCs were co-cultured with cardiac slices, immunohistochemical analysis and qRT-PCR showed that the integration of DHT-stimulated MSC was significantly higher than that of in controls. In conclusion, our findings provide the first evidence that DHT promotes MSC growth, migration and integration into the cardiac slices. The modulating effects of DHT were associated with upregulation of ARs and of key molecules known to promote tissue remodeling and angiogenesis. Our findings suggest that priming of MSC with DHT may potentially increase their capability to regenerate cardiac tissue; in vivo studies are needed to confirm our in vitro findings.


Assuntos
Indutores da Angiogênese/farmacologia , Di-Hidrotestosterona/farmacologia , Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Basigina/genética , Basigina/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Cromatografia Líquida , Humanos , Espectrometria de Massas , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Óxido Nítrico/biossíntese , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Reproduction ; 155(3): 233-244, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29254988

RESUMO

Autocrine/paracrine factors generated in response to 17ß-oestradiol (E2), within the oviduct, facilitate early embryo development for implantation. Since transforming growth factor beta 1 (TGFB1) plays a key role in embryo implantation, regulation of its synthesis by E2 may be of biological/pathophysiological relevance. Here, we investigated whether oviduct cells synthesize TGFB1 and whether E2 and environmental oestrogens (EOEs; xenoestrogens and phytoestrogens) modulate its synthesis. Under basal conditions, bovine oviduct cells (OCs; oviduct epithelial cells and oviduct fibroblasts; 1:1 ratio) synthesized TGFB1. E2 concentration-dependent induced TGFB1 levels in OCs and these effects were mimicked by some, but not all EOEs (genistein, biochanin A and 4-hydroxy-2',4',6'-trichlorobiphenyl, 4-hydroxy-2',4',6'-dichlorobiphenyl); moreover, EOEs enhanced (P < 0.05) the stimulatory effects of E2 on TGFB1 synthesis. The OCs expressed oestrogen receptors alpha and beta and aryl hydrocarbon; moreover, co-treatment with ER antagonist ICI182780 blocked the stimulatory effects of E2 and EOEs on TGFB1 synthesis. Treatment with non-permeable E2-BSA failed to induce TGFB1, thereby ruling out the involvement of membrane ERs. Cycloheximide (protein synthesis inhibitor) blocked E2-induced TGFB1 synthesis providing evidence for de novo synthesis. The stimulatory effects of E2 and EOEs, were inhibited (P < 0.05) by MAPK inhibitor (PD98059), whereas intracellular-Ca2+ chelator (BAPTA-AM) and adenylyl cyclase inhibitor (SQ22536) abrogated the effects of E2, but not EOEs, suggesting that post-ER effects of E2 and EOEs involve different pathways. Our results provide the first evidence that in OCs, E2 and EOEs stimulate TGFB1 synthesis via an ER-dependent pathway. Exposure of the oviduct to EOEs may result in continuous/sustained induction of TGFB1 levels in a non-cyclic fashion and may induce deleterious effects on reproduction.


Assuntos
Estrogênios não Esteroides/farmacologia , Estrogênios/farmacologia , Tubas Uterinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fitoestrógenos/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Xenobióticos/farmacologia , Animais , Bovinos , Células Cultivadas , Tubas Uterinas/citologia , Tubas Uterinas/efeitos dos fármacos , Feminino , Fator de Crescimento Transformador beta1/genética
15.
Phytother Res ; 31(12): 1868-1874, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28948673

RESUMO

We previously reported that piperine, an active alkaloidal principal of black and long peppers, enhances drug bioavailability by inhibiting drug metabolism. Another mechanism influencing drug availability/uptake is its free fraction. Since piperine is highly lipophilic, we hypothesize that it could also interact with drugs through binding displacement and influence their bioavailability. Accordingly, using equilibrium dialysis, we investigated whether piperine alters the binding of model drug ligands, that is flunitrazepam, diazepam, warfarin, salicylic acid, propranolol, lidocaine, and disopyramide to human plasma (n = 4). Since alterations in binding influence drug disposition, we also studied the effects of piperine on the uptake of plasma bound 3 H-propranolol and 14 C-warfarin by cultured bovine brain microvascular endothelial cells (BMECs). Piperine (1-1000 µM) increased the free fraction (fu) of both albumin and alpha-acid glycoprotein bound drugs in a concentration-dependent manner (p < 0.01). Moreover, piperine (10 µM) increased the uptake of 3 H-propranolol and 14 C-warfarin by BMECs (p < 0.01). In conclusion, our findings provide the first evidence that piperine displaces plasma bound drugs from both albumin and alpha-acid glycoprotein and facilitates drug uptake across biological membranes (e.g. BMEC). Moreover, it is feasible that piperine may similarly facilitate the transport of drugs into tissues, in vivo, and alter both pharmacokinetics and pharmacodynamics of administered drugs. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Alcaloides/química , Benzodioxóis/química , Encéfalo/patologia , Células Endoteliais/metabolismo , Piperidinas/química , Plasma/metabolismo , Alcamidas Poli-Insaturadas/química , Adulto , Transporte Biológico/efeitos dos fármacos , Humanos , Masculino , Ligação Proteica
16.
Medicine (Baltimore) ; 96(30): e7029, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28746172

RESUMO

Hypertension is the leading risk factor for cardiovascular disease and one of the major health concerns worldwide. Genetic factors impact both the risk for hypertension and the therapeutic effect of antihypertensive drugs. Sex- and age-specific variances in the prevalence of hypertension are partly induced by estrogen. We investigated 6 single nucleotide polymorphisms in genes encoding enzymes involved in estrogen metabolism in relation to sex- and age-specific differences in the systolic and diastolic blood pressure (SBP and DBP) outcome under the treatment of diuretics, calcium-channel blockers (CCBs), angiotensin-converting-enzyme inhibitors, and angiotensin-receptor blockers (ARBs).We included 5064 subjects (age: 40-82) from the population-based CoLaus cohort. Participants were genotyped for the catechol-O-methyltransferase gene (COMT) variants rs4680, rs737865, and rs165599; the uridine-diphospho-glucuronosyltransferase 1A gene family (UGT1A) variants rs2070959 and rs887829; and the aromatase gene (CYP19A1) variant rs10046. Binomial and linear regression analyses were performed correcting for age, sex, body mass index, smoking, diabetes, and antihypertensive therapy to test whether the variants in focus are significantly associated with BP.All investigated COMT variants were strongly associated with the effect of diuretics, CCBs, and ARBs on SBP or DBP (P < .05), showing an additive effect when occurring in combination. After Bonferroni correction the polymorphism rs4680 (ValMet) in COMT was significantly associated with lower SBP in participants treated with CCBs (P = .009) with an especially strong impact in elderly individuals (age ≥ 70) alone (Δ = -14.08 mm Hg, P = .0005).These results underline the important role of estrogens and catecholamines in hypertension and the importance of genotype dependent, age-related adjustments of calcium-channel blocker treatment.


Assuntos
Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Bloqueadores dos Canais de Cálcio/uso terapêutico , Catecol O-Metiltransferase/genética , Variantes Farmacogenômicos , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anti-Hipertensivos/uso terapêutico , Aromatase/genética , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Estudos de Coortes , Feminino , Técnicas de Genotipagem , Glucuronosiltransferase/genética , Humanos , Masculino , Pessoa de Meia-Idade , Suíça
18.
J Neurochem ; 141(5): 676-693, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28294336

RESUMO

The early release of adenosine following traumatic brain injury (TBI) suppresses seizures and brain inflammation; thus, it is important to elucidate the cellular sources of adenosine following injurious stimuli triggered by TBI so that therapeutics for enhancing the early adenosine-release response can be optimized. Using mass spectrometry with 13 C-labeled standards, we investigated in cultured rat neurons, astrocytes, and microglia the effects of oxygen-glucose deprivation (OGD; models energy failure), H2 O2 (produces oxidative stress), and glutamate (induces excitotoxicity) on intracellular and extracellular levels of 5'-AMP (adenosine precursor), adenosine, and inosine and hypoxanthine (adenosine metabolites). In neurons, OGD triggered increases in intracellular 5'-AMP (2.8-fold), adenosine (2.6-fold), inosine (2.2-fold), and hypoxanthine (5.3-fold) and extracellular 5'-AMP (2.2-fold), adenosine (2.4-fold), and hypoxanthine (2.5-fold). In neurons, H2 O2 did not affect intracellular or extracellular purines; yet, glutamate increased intracellular adenosine, inosine, and hypoxanthine (1.7-fold, 1.7-fold, and 1.6-fold, respectively) and extracellular adenosine, inosine, and hypoxanthine (2.9-fold, 2.1-fold, and 1.6-fold, respectively). In astrocytes, neither H2 O2 nor glutamate affected intracellular or extracellular purines, and OGD only slightly increased intracellular and extracellular hypoxanthine. Microglia were unresponsive to OGD and glutamate, but were remarkably responsive to H2 O2 , which increased intracellular 5'-AMP (1.6-fold), adenosine (1.6-fold), inosine (2.1-fold), and hypoxanthine (1.6-fold) and extracellular 5'-AMP (5.9-fold), adenosine (4.0-fold), inosine (4.3-fold), and hypoxanthine (1.9-fold). CONCLUSION: Under these particular experimental conditions, cultured neurons are the main contributors to adenosine production/release in response to OGD and glutamate, whereas cultured microglia are the main contributors upon oxidative stress. Developing therapeutics that recruit astrocytes to produce/release adenosine could have beneficial effects in TBI.


Assuntos
Adenosina/metabolismo , Córtex Cerebral/citologia , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Embrião de Mamíferos , Metabolismo Energético/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/deficiência , Ácido Glutâmico/farmacologia , Peróxido de Hidrogênio/farmacologia , Hipóxia/patologia , L-Lactato Desidrogenase/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley
19.
Gynecol Endocrinol ; 32(7): 529-33, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26800447

RESUMO

Endometriosis, a painful disorder associated with infertility, is estimated to occur in approximately 7-10% of reproductive age women. Although endometriosis is considered as an estrogen-dependent disease, the role of estrogen metabolites via receptor-independent mechanisms has not yet been comprehensively clarified. In the present study, growth studies were performed comparing the effect of estradiol (E2), estrogen metabolites, that is, 2-hydroxyestradiol (2-OHE2) and 2-methoxyestradiol (2-ME), as well as estrogen-receptor-independent mechanisms using the estrogen receptor antagonist fulvestrant, on cell proliferation of endometriotic cells. The estrogen metabolites 2-OHE2 and 2-ME inhibited cell growth in a dose-dependent manner in pharmacological doses. Lower concentrations of 2-OHE2 had a stimulating effect on cell proliferation while pharmacologic doses exerted an antimitogenic effect. The effects on cell growth were at least partially receptor-independent, as demonstrated by simultaneous receptor antagonization with fulvestrant. In conclusion, our results demonstrate that in pharmacological doses the estrogen metabolites 2-ME and 2-OHE2 show inhibiting effects on the proliferation of endometriotic cells and may be promising substances for the treatment of endometriosis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Endometriose/tratamento farmacológico , Estradiol/análogos & derivados , Antagonistas do Receptor de Estrogênio/farmacologia , 2-Metoxiestradiol , Linhagem Celular , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Feminino , Fulvestranto , Humanos
20.
Am J Physiol Endocrinol Metab ; 310(5): E313-22, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26732685

RESUMO

17ß-Estradiol (estradiol) inhibits microglia proliferation. 2-Methoxyestradiol (2-ME) is an endogenous metabolite of estradiol with little affinity for estrogen receptors (ERs). We hypothesize that 2-ME inhibits microglial proliferation and activation and contributes to estradiol's inhibitory effects on microglia. We compared the effects of estradiol, 2-hydroxyestradiol [2-OE; estradiol metabolite produced by cytochrome P450 (CYP450)], and 2-ME [formed by catechol-O-methyltransferase (COMT) acting upon 2-OE] on microglial (BV2 cells) DNA synthesis, cell proliferation, activation, and phagocytosis. 2-ME and 2-OE were approximately three- and 10-fold, respectively, more potent than estradiol in inhibiting microglia DNA synthesis. The antimitogenic effects of estradiol were reduced by pharmacological inhibitors of CYP450 and COMT. Inhibition of COMT blocked the conversion of 2-OE to 2-ME and the antimitogenic effects of 2-OE but not 2-ME. Microglia expressed ERß and GPR30 but not ERα. 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERß agonist), but not 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (ERα agonist) or G1 (GPR30 agonist), inhibited microglial proliferation. The antiproliferative effects of estradiol, but not 2-OE or 2-ME, were partially reversed by ICI-182,780 (ERα/ß antagonist) but not by 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole (ERα antagonist) or G15 (GPR30 antagonist). Lipopolysaccharide increased microglia iNOS and COX-2 expression and phagocytosing activity of microglia; these effects were inhibited by 2-ME. We conclude that in microglia, 2-ME inhibits proliferation, proinflammatory responses, and phagocytosis. 2-ME partially mediates the effects of estradiol via ER-independent mechanisms involving sequential metabolism of estradiol to 2-OE and 2-ME. 2-ME could be of potential therapeutic use in postischemic stroke injuries. Interindividual differences in estradiol metabolism might affect the individual's ability to recover from stroke.


Assuntos
Proliferação de Células/efeitos dos fármacos , DNA/biossíntese , Estradiol/análogos & derivados , Estradiol/farmacologia , Estrogênios/farmacologia , Microglia/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , 2-Metoxiestradiol , Animais , Catecol O-Metiltransferase , Inibidores de Catecol O-Metiltransferase/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , DNA/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/metabolismo , Camundongos , Microglia/metabolismo , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...