Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105542, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072058

RESUMO

The gastric proton pump (H+,K+-ATPase) transports a proton into the stomach lumen for every K+ ion exchanged in the opposite direction. In the lumen-facing state of the pump (E2), the pump selectively binds K+ despite the presence of a 10-fold higher concentration of Na+. The molecular basis for the ion selectivity of the pump is unknown. Using molecular dynamics simulations, free energy calculations, and Na+ and K+-dependent ATPase activity assays, we demonstrate that the K+ selectivity of the pump depends upon the simultaneous protonation of the acidic residues E343 and E795 in the ion-binding site. We also show that when E936 is protonated, the pump becomes Na+ sensitive. The protonation-mimetic mutant E936Q exhibits weak Na+-activated ATPase activity. A 2.5-Å resolution cryo-EM structure of the E936Q mutant in the K+-occluded E2-Pi form shows, however, no significant structural difference compared with wildtype except less-than-ideal coordination of K+ in the mutant. The selectivity toward a specific ion correlates with a more rigid and less fluctuating ion-binding site. Despite being exposed to a pH of 1, the fundamental principle driving the K+ ion selectivity of H+,K+-ATPase is similar to that of Na+,K+-ATPase: the ionization states of the acidic residues in the ion-binding sites determine ion selectivity. Unlike the Na+,K+-ATPase, however, protonation of an ion-binding glutamate residue (E936) confers Na+ sensitivity.


Assuntos
Simulação de Dinâmica Molecular , Potássio , Potássio/metabolismo , Estômago , Sítios de Ligação , Sódio/metabolismo , Adenosina Trifosfatases/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/genética , ATPase Trocadora de Hidrogênio-Potássio/metabolismo
2.
RSC Adv ; 13(38): 26357-26365, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37671341

RESUMO

The solid-state reaction method was utilised to create a down-conversion phosphor in an air environment in CaY2O4:Eu3+ nanocrystalline material. The calcination temperature was set at 1000 °C, and the sintering temperature was set at 1300 °C. Following annealing, confirmation of the crystallinity quality of the phosphor was accomplished by the use of X-ray diffraction analysis. The particle size was predicted to be 43.113 nm using Scherrer's formula. To produce down-conversion luminescence spectra, an excitation wavelength of 247 nm was applied with a fluorescence spectrophotometer. The PL got increasingly intense as the concentration of the dopant increased. The maximum intensity was measured at 2.0 mol% of Eu3+ ion, which gradually decreased as the concentration increased because of concentration quenching. To analyse spectrophotometric peak determinations, the approach developed by the Commission Internationale de l'Éclairage (CIE) was used. Thermoluminescence (TL) glow curve analysis of the CaY2O4:Eu3+-doped phosphor manufactured here revealed a wide TL centred at 225 °C, which comprised of so many peaks that may be extracted by the computerised glow curve deconvolution (CGCD) approach using glow-fit software. The associated kinetic parameters were then determined. The prepared phosphor may be useful for application in various display devices upon excitation by 247 nm; the prominent 613 nm peak of the Eu3+ ion (5D0 → 7F2) electric dipole transition features a red component. CaY2O4:Eu3+ phosphors show promise as materials for potential use in phosphor-converted white LEDs in the field of solid-state lighting technology. The linear connection that the TL glow curve has with UV dose provides evidence for its possible use in dosimetry.

3.
RSC Adv ; 13(29): 20217-20228, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37416907

RESUMO

This research paper reports the synthesis and luminescence study of an Eu3+ activated SrY2O4 phosphor prepared by a modified solid-state reaction method with varying concentrations of Eu3+ ions (0.1-2.5 mol%). X-ray diffraction (XRD) revealed the orthorhombic structure and Fourier transform infrared spectroscopy (FTIR) methods were used to analyse the produced phosphors. Photoluminescence emission and excitation spectra were recorded for varying concentrations of Eu3+ ions, and an optimum concentration of 2.0 mol% was found to produce the highest intensity. Under 254 nm excitation the emission peaks were found to be at 580 nm, 590 nm, 611 nm and 619 nm, corresponding to transitions at 5D0 → 7F0, 5D0 → 7F1, and 5D0 → 7F2 respectively. Because of Eu3+ inherent luminosity, these emission peaks indicate radiative transitions between excited states of ions, making them useful for developing white light-emitting phosphors for optoelectronic and flexible display applications. The 1931 CIE (x, y) chromaticity coordinates were calculated from the photoluminescence emission spectra and found to be near white light emission, indicating the potential application of the prepared phosphor for light emitting diodes (white component). TL glow curve analysis was also performed for various concentrations of doping ions and UV exposure times, and a single broad peak was observed at 187 °C. Using the computerised glow curve deconvolution (CGCD) method, kinetic parameters were computed.

4.
Luminescence ; 38(9): 1591-1596, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37329119

RESUMO

Here, the synthesis and luminescence analysis of the Tb3+ -activated phosphor were reported. The CaY2 O4 phosphors were synthesized using a modified solid-state reaction method with a variable doping concentration of Tb3+ ion (0.1-2.5 mol%). As synthesized, the phosphor was characterized using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis techniques for the optimized concentration of doping ions. The prepared phosphor showed a cubic structure, and FTIR analysis confirmed functional group analysis. It was discovered that the intensity of 1.5 mol% was higher than at other concentrations after the photoluminescence (PL) excitation and emission spectra were recorded for different concentrations of doping ions. The excitation was monitored at 542 nm, and the emission was monitored at 237 nm. At 237 nm excitation, the emission peaks were found at 620 nm (5 D4 →7 F3 ), 582 nm (5 D4 →7 F4 ), 542 nm (5 D4 →7 F5 ), and 484 nm (5 D4 →7 F6 ). The 1931 CIE (x, y) chromaticity coordinates showed the distribution of the spectral region calculated from the PL emission spectra. The values of (x = 0.34 and y = 0.60) were very close to dark green emission. Therefore, the produced phosphor would be very useful for light-emitting diode (green component) applications. Thermoluminescence glow curve analysis for various concentrations of doping ions and various ultraviolet (UV) exposure times was carried out, and a single broad peak was found at 252°C. The computerized glow curve deconvolution method was used to obtain the related kinetic parameters. The prepared phosphor exhibited an excellent response to UV dose and could be useful for UV ray dosimetry.


Assuntos
Luminescência , Raios Ultravioleta , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Phys Chem Chem Phys ; 24(31): 18738-18750, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900000

RESUMO

A series of experimental and simulation studies examined the validity of the Stokes-Einstein relationship (SER) of water in binary water/alcohol mixtures of different mixture compositions. These studies revealed a strong non-monotonic composition dependence of the SER with maxima at the specific alcohol mole fraction where the non-idealities of the thermodynamic and transport properties are observed. The translational jump-diffusion (TJD) approach elucidated the breakdown of the SER in pure supercooled water as caused by the jump translation of molecules. The breakdown of SER in the supercooled water/methanol binary mixture was successfully explained using the same TJD approach. To further generalize the picture, here we focus on the non-monotonic composition dependence of SER breakdown of water in two water/alcohol mixtures (water/ethanol and water/propanol) for a broad temperature range. In agreement with previous studies, maximum breakdown of SER is observed for the mixture with alcohol mole fraction x = 0.2. Diffusion of the water molecules at the maximum SER breakdown point is largely contributed by jump-diffusion. The residual-diffusion, obtained by subtracting the jump-diffusion from the total diffusion, approximately follows the SER for different compositions and temperatures. We also performed hydrogen (H-)bond dynamics and observed that the contribution of jump-diffusion is proportional to the total free energy of activation of breaking all H-bonds that exist around a molecule. This study, therefore, suggests that the more a molecule is trapped by H-bonding, the more likely it is to diffuse through the jump-diffusion mechanism, eventually leading to an increasing degree of SER breakdown.

6.
Luminescence ; 37(8): 1284-1289, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35614866

RESUMO

In this paper, we present new aspects of Sm3+ -doped pure Li2 CaSiO4 as a suitable candidate for white light emitting diode (WLED) applications. The samples were mainly prepared using a conventional modified solid-state synthesis technique. The structural studies were done using X-ray diffraction and Rietveld refinement. Instruments such as a scanning electron microscope (SEM) were used to obtain information about the morphology of the as-prepared samples. Photoluminescence (PL) analysis of phosphor samples for variable concentrations of doping ions with variable excitations were presented. When doped with Sm3+ in host Li2 CaSiO4 it emitted intense blue, green and red emissions and a more intense red emission peak (605 nm) under 408 nm excitation (near-UV-blue). Our study shows that the as-prepared phosphor may be useful for optical devices and mainly for WLEDs. The corresponding transitions of doping ions and concentration quenching effect were studied in detail. The 1931 Commission Internationale de l'Eclairage (x, y) chromaticity coordinates showed the distribution of spectral regions calculated from PL emission spectra and this was found (0.63, 0.36) in the red region, so the phosphor may be useful for near-UV-blue excited WLED applications.

7.
J Phys Chem B ; 126(12): 2430-2440, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35294202

RESUMO

Earlier, ab initio and reactive force-field-based molecular dynamics (MD) simulation studies suggested an overwhelming contribution of the vehicular diffusion in the total diffusion of hydroxide ions rather than structural diffusion. But does the vehicular diffusion occur via small-step displacement? This question is important to have an understanding of the real characteristics of vehicular diffusion. To answer this question, we perform a classical molecular dynamics simulation of a system containing a hydroxide ion exchange membrane polymer and hydroxide ion at different hydration levels and temperatures using the same molecular force field (Dubey, V. Chem. Phys. Lett. 2020, 755, 137802), which successfully captured the microscopic structure and dynamics of the system. We use the translational jump-diffusion approach, used previously in supercooled water for understanding the origin of breakdown of the Stokes-Einstein relation, to calculate the jump-diffusion coefficient of hydroxide ion and water in the anion exchange membrane. We have seen a significant role of hydration level and temperature in the mechanism of vehicular diffusion. In overhydrated membrane, both hydroxide ions and water molecules diffuse via both small- and large-step displacement. With decreasing hydration level and temperature, the diffusion is increasingly governed by the jump-diffusion mechanism. The larger contribution of jump-diffusion comes from the stronger caging of the diffusing species by the solvent at lower hydration levels and temperature. These results, therefore, suggest that the hydration level and temperature of the hydroxide ion exchange membrane determine the detailed mechanism of the vehicular diffusion of hydroxide ion, especially whether the diffusion follows hydrodynamics or not.


Assuntos
Hidróxidos , Água , Difusão , Simulação de Dinâmica Molecular , Água/química
8.
Materials (Basel) ; 14(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34832388

RESUMO

In this paper, the possibility of color controlling anodic titanium oxide by changing anodizing conditions of titanium in an ethanol-based electrolyte is demonstrated. Colored anodic titanium oxide was fabricated in an ethanol-based electrolyte containing 0.3 M ammonium fluoride and various amounts of deionized water (2, 3.5, 5, or 10 vol%), at voltages that varied from 30 to 60 V and at a constant anodization temperature of 20 °C. Morphological characterization of oxide layers was established with the use of a scanning electron microscope. Optical characterization was determined by measuring diffusion reflectance and calculating theoretical colors. The resulting anodic oxides in all tested conditions had nanotubular morphology and a thickness of up to hundreds of nanometers. For electrolytes with 3.5, 5, and 10 vol% water content, the anodic oxide layer thickness increased with the applied potential increase. The anodic titanium oxide nanotube diameters and the oxide thickness of samples produced in an electrolyte with 2 vol% water content were independent of applied voltage and remained constant within the error range of all tested potentials. Moreover, the color of anodic titanium oxide produced in an electrolyte with 2 vol% of water was blue and was independent from applied voltage, while the color of samples from other electrolyte compositions changed with applied voltage. For samples produced in selected conditions, iridescence was observed. It was proposed that the observed structural color of anodic titanium oxide results from the synergy effect of nanotube diameter and oxide thickness.

10.
Phys Chem Chem Phys ; 23(36): 19964-19986, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34515269

RESUMO

Although water is the most ubiquitous liquid it shows many thermodynamic and dynamic anomalies. Some of the anomalies further intensify in the supercooled regime. While many experimental and theoretical studies have focused on the thermodynamic anomalies of supercooled water, fewer studies explored the dynamical anomalies very extensively. This is due to the intricacy of the experimental measurement of the dynamical properties of supercooled water. Violation of the Stokes-Einstein relation (SER), an important relation connecting the diffusion of particles with the viscosity of the medium, is one of the major dynamical anomalies. In absence of experimentally measured viscosity, researchers used to check the validity of SER indirectly using average translational relaxation time or α-relaxation time. Very recently, the viscosity of supercooled water was accurately measured at a wide range of temperatures and pressures. This allowed direct verification of the SER at different temperature-pressure thermodynamic state points. An increasing breakdown of the SER was observed with decreasing temperature. Increasing pressure reduces the extent of breakdown. Although some well-known theories explained the above breakdown, a detailed molecular mechanism was still elusive. Recently, a translational jump-diffusion (TJD) approach has been able to quantitatively explain the breakdown of the SER in pure supercooled water and an aqueous solution of methanol. The objective of this article is to present a detailed and state-of-the-art analysis of the past and present works on the breakdown of SER in supercooled water with a specific focus on the new TJD approach for explaining the breakdown of the SER.

11.
Sci Rep ; 11(1): 17883, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504170

RESUMO

During 2018 an intensive study was conducted to determine the viruses associated with cucurbitaceous crops in nine agroclimatic zones of the state of Uttar Pradesh, India. Total of 563 samples collected and analysed across 14 different cucurbitaceous crops. The results showed the dominance of Begomovirus (93%) followed by Potyvirus (46%), cucumber green mottle mosaic virus (CGMMV-39%), Polerovirus (9%), cucumber mosaic virus (CMV-2%) and Orthotospovirus (2%). Nearly 65% of samples were co-infected with more than one virus. Additionally, host range expansion of CMV, CGMMV and polerovirus was also observed on cucurbit crops. A new potyvirus species, zucchini tigre mosaic virus, earlier not documented from India has also been identified on five crops during the study. Risk map generated using ArcGIS for virus disease incidence predicted the virus severity in unexplored areas. The distribution pattern of different cucurbit viruses throughout Uttar Pradesh will help identify the hot spots for viruses and will facilitate to devise efficient and eco-friendly integrated management strategies for the mitigation of viruses infecting cucurbit crops. Molecular diversity and evolutionary relationship of the virus isolates infecting cucurbits in Uttar Pradesh with previously reported strains were understood from the phylogenetic analysis. Diverse virus infections observed in the Eastern Plain zone, Central zone and North-Eastern Plain zone indicate an alarming situation for the cultivation of cucurbits in the foreseeable future.


Assuntos
Produtos Agrícolas/virologia , Cucumovirus/patogenicidade , Cucurbita/virologia , Cucurbitaceae/virologia , Genoma Viral , Índia , Doenças das Plantas/virologia , Tobamovirus/patogenicidade
12.
J Mol Biol ; 433(15): 167008, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33951450

RESUMO

The heterotetrameric bacterial KdpFABC transmembrane protein complex is an ion channel-pump hybrid that consumes ATP to import K+ against its transmembrane chemical potential gradient in low external K+ environments. The KdpB ion-pump subunit of KdpFABC is a P-type ATPase, and catalyses ATP hydrolysis. Under high external K+ conditions, K+ can diffuse into the cells through passive ion channels. KdpFABC must therefore be inhibited in high K+ conditions to conserve cellular ATP. Inhibition is thought to occur via unusual phosphorylation of residue Ser162 of the TGES motif of the cytoplasmic A domain. It is proposed that phosphorylation most likely traps KdpB in an inactive E1-P like conformation, but the molecular mechanism of phosphorylation-mediated inhibition remains unknown. Here, we employ molecular dynamics (MD) simulations of the dephosphorylated and phosphorylated versions of KdpFABC to demonstrate that phosphorylated KdpB is trapped in a conformation where the ion-binding site is hydrated by an intracellular pathway between transmembrane helices M1 and M2 which opens in response to the rearrangement of cytoplasmic domains resulting from phosphorylation. Cytoplasmic access of water to the ion-binding site is accompanied by a remarkable loss of secondary structure of the KdpB N-terminus and disruption of a key salt bridge between Glu87 in the A domain and Arg212 in the P domain. Our results provide the molecular basis of a unique mechanism of regulation amongst P-type ATPases, and suggest that the N-terminus has a significant role to play in the conformational cycle and regulation of KdpFABC.


Assuntos
Bactérias/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Trifosfato de Adenosina/química , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Citoplasma/metabolismo , Hidrólise , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosforilação , Domínios Proteicos , Estrutura Secundária de Proteína
13.
Luminescence ; 36(6): 1507-1512, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34048636

RESUMO

Here, we report the photoluminescence and thermoluminescent properties of Dy-activated Ca2 ZnSi2 O7 phosphors synthesized using the solid-state method. The synthesized phosphors showed hardystonite type structure, and had micron-sized particles. Fourier transform infrared spectroscopy (FTIR) showed the existence of the functional groups and confirmed the formation of phosphor and photoluminescence techniques. The phosphors under excitation at 239 nm exhibited green-yellow emission spectra in the region 481-575 nm corresponding to the 4 F9/2 →6 H15/2 and 4 F9/2 →6 H13/2 transitions of Dy3+ ions. The Commission Internationale de l'Eclairage (CIE) coordinates were achieved to be (0.25, 0.27), which was narrowly close to the white region. Thermoluminescence (TL) glow curve analysis of prepared Dy3+ -activated Ca2 ZnSi2 O7 phosphors were recorded for different ultraviolet (UV) light exposure times and found to have a linear response with dose. The TL glow curves, recorded with various UV exposure times ranging from 5 to 25 min, showed a linear response with dosage. The corresponding kinetic parameters were also calculated using a computerized glow curve deconvolution (CGCD) technique. Activation energy was observed to enhance the increase in the peak temperature and its value was substantially higher for the third peak fitted using CGCD. The obtained results indicated that the synthesized pristine phosphors could be potentially used for lighting, displays, and dosimetric applications.


Assuntos
Luz , Luminescência , Silicatos , Raios Ultravioleta , Difração de Raios X
14.
J Phys Chem B ; 124(46): 10398-10408, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33153260

RESUMO

A recent experiment has directly checked the validity of the Stokes-Einstein (SE) relation for pure water, pure methanol, and their binary mixtures of three different compositions at different temperatures. The effect of composition on the nature of breakdown of the SE relation is interesting. While in the majority of the systems, an increasing SE breakdown is observed with decreasing temperature, the breakdown is already significant at higher temperatures for the equimolar mixture. Violations of the SE relation in pure supercooled water at different temperatures and pressures have been previously explained using the translational jump-diffusion (TJD) approach, which provides a fundamental molecular basis, by directly connecting the SE breakdown with jump-diffusion of the molecules. We have used the same TJD approach for explaining the SE breakdown for the methanol/water binary mixtures of compositions studied in the experiment over a wide range of temperatures between 220 K and 300 K. We have understood that the jump-diffusion is the key responsible factor for the SE breakdown. The maximum jump-diffusion contribution gives rise to the early SE breakdown observed for the equimolar mixture observed in the experiment. This study, therefore, provides molecular insight into the SE breakdown for the supercooled water/methanol binary mixture, as found in the experiment.

15.
PLoS Comput Biol ; 16(10): e1007554, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33021976

RESUMO

Lysosomal accumulation of cholesterol is a hallmark of Niemann Pick type C (NPC) disease caused by mutations primarily in the lysosomal membrane protein NPC1. NPC1 contains a transmembrane sterol-sensing domain (SSD), which is supposed to regulate protein activity upon cholesterol binding, but the mechanisms underlying this process are poorly understood. Using atomistic simulations, we show that in the absence of cholesterol in the SSD, the luminal domains of NPC1 are highly dynamic, resulting in the disengagement of the NTD from the rest of the protein. The disengaged NPC1 adopts a flexed conformation that approaches the lipid bilayer, and could represent a conformational state primed to receive a sterol molecule from the soluble lysosomal cholesterol carrier NPC2. The binding of cholesterol to the SSD of NPC1 allosterically suppresses the conformational dynamics of the luminal domains resulting in an upright NTD conformation. The presence of an additional 20% cholesterol in the membrane has negligible impact on this process. The additional presence of an NTD-bound cholesterol suppresses the flexing of the NTD. We propose that cholesterol acts as an allosteric effector, and the modulation of NTD dynamics by the SSD-bound cholesterol constitutes an allosteric feedback mechanism in NPC1 that controls cholesterol abundance in the lysosomal membrane.


Assuntos
Colesterol , Peptídeos e Proteínas de Sinalização Intracelular , Colesterol/química , Colesterol/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Modelos Moleculares , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Ligação Proteica , Domínios Proteicos
16.
Elife ; 92020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955430

RESUMO

KdpFABC is an ATP-dependent K+ pump that ensures bacterial survival in K+-deficient environments. Whereas transcriptional activation of kdpFABC expression is well studied, a mechanism for down-regulation when K+ levels are restored has not been described. Here, we show that KdpFABC is inhibited when cells return to a K+-rich environment. The mechanism of inhibition involves phosphorylation of Ser162 on KdpB, which can be reversed in vitro by treatment with serine phosphatase. Mutating Ser162 to Alanine produces constitutive activity, whereas the phosphomimetic Ser162Asp mutation inactivates the pump. Analyses of the transport cycle show that serine phosphorylation abolishes the K+-dependence of ATP hydrolysis and blocks the catalytic cycle after formation of the aspartyl phosphate intermediate (E1~P). This regulatory mechanism is unique amongst P-type pumps and this study furthers our understanding of how bacteria control potassium homeostasis to maintain cell volume and osmotic potential.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/metabolismo , ATPases do Tipo-P/metabolismo , Potássio/metabolismo , Serina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutação/genética , ATPases do Tipo-P/química , ATPases do Tipo-P/genética , Fosforilação/genética
17.
J Fluoresc ; 30(4): 819-825, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32430863

RESUMO

In the present report, thermally stimulated luminescence (TSL) of quartz and limestone samples irradiated with ß and γ-rays has been investigated. Herein the formation of trap depths and calculation of kinetic parameters of ß and γ - irradiated quartz and limestone samples were studied through thermoluminescence (TL) glow curve analyses. The quartz and limestone samples were collected from various sites of Chhattisgarh (Patharia and Dalli-Rajhara mines). The collected raw samples were annealed at 400 °C. The phase formation of collected samples is confirmed by X-ray diffraction studies. The grain sizes of the samples are determined by using Debye-Scherrer formula. TL glow curves of the collected samples were recorded for various doses of ß and γ-rays. Kinetic parameters such as order of kinetics frequency factor and trap depth were calculated by employing CGCD methods. A comparative study on the TL properties of the geological materials under ß and γ-irradiation was done. The trap model analysis was executed to determine the nature of traps responsible for dominant TL peaks of ß and γ-irradiated limestone and quartz samples.

18.
J Phys Chem B ; 123(47): 10089-10099, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31702917

RESUMO

A recent experiment has measured the viscosity of water down to approximately 244 K and up to 300 MPa. The correct viscosity and translational diffusivity data at various temperature-pressure (T-P) state points allowed for checking the validity of the Stokes-Einstein (SE) relation, which accounts for the coupling between translational self-diffusion and medium viscosity. The diffusion-viscosity decoupling increases with decreasing temperature, but the increasing pressure reduces the extent of the decoupling. Earlier simulation studies explained the breakdown of the SE relation in terms of the location of the Widom line, emanating from the liquid-liquid critical point (LLCP). Although these studies made a significant contribution to the current understanding of the above phenomena, a detailed molecular picture is still lacking. Recently, our group has explained the diffusion-viscosity decoupling from a jump-diffusion perspective. The jump-diffusion coefficient, emanating from the jump translation of water molecules, is calculated using a quantitative approach for different temperatures at ambient pressure. It has been observed that jump-diffusion is the key factor for diffusion-viscosity decoupling in supercooled water. The same method is adopted in the present work to estimate the jump-diffusion coefficient for different T-P state points and, thereby, explains the role of jump-diffusion for the different extents of the SE relation breakdown at different pressures. The residual diffusion coefficient, the other component of the total diffusion that originates from small step displacement and that is calculated by subtracting the jump-diffusion coefficient from the total diffusion, is seen to be fairly coupled to the viscosity at the entire range of temperature and pressure. Furthermore, we have calculated the average number of H-bonds per water molecule and the tetrahedral order for different T-P state points and investigated an approximate correlation between the average local structure and the contribution of the jump-diffusion to the total diffusion of water. This study, therefore, puts forward a new perspective for explaining the SE relation breakdown in supercooled water under different pressure conditions.

19.
Elife ; 82019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31436534

RESUMO

The gastric proton pump (H+,K+-ATPase), a P-type ATPase responsible for gastric acidification, mediates electro-neutral exchange of H+ and K+ coupled with ATP hydrolysis, but with an as yet undetermined transport stoichiometry. Here we show crystal structures at a resolution of 2.5 Å of the pump in the E2-P transition state, in which the counter-transporting cation is occluded. We found a single K+ bound to the cation-binding site of the H+,K+-ATPase, indicating an exchange of 1H+/1K+ per hydrolysis of one ATP molecule. This fulfills the energy requirement for the generation of a six pH unit gradient across the membrane. The structural basis of K+ recognition is resolved and supported by molecular dynamics simulations, establishing how the H+,K+-ATPase overcomes the energetic challenge to generate an H+ gradient of more than a million-fold-one of the highest cation gradients known in mammalian tissue-across the membrane.


Assuntos
Potássio/metabolismo , Bombas de Próton/química , Bombas de Próton/metabolismo , Sítios de Ligação , Cátions/metabolismo , Cristalografia por Raios X , Ligação Proteica , Conformação Proteica
20.
J Phys Chem B ; 123(33): 7178-7189, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31361139

RESUMO

Some experiments have witnessed gradual decoupling of viscosity from the translational self-diffusion of supercooled water with decreasing temperature. This indicates the breakdown of the Stokes-Einstein equation in supercooled water. While some theoretical and computer simulation studies indicated the jump translation of the molecules as a probable origin of the above decoupling, direct quantitative evidence is still lacking. Through a molecular dynamics (MD) simulation study, along with careful consideration of translational jump motion, we have found the most definite proof of increasing relevance of translational jump diffusion in the above decoupling phenomena. By separating the jump-only diffusion contribution from the overall diffusion of the water, we obtain the residual diffusion coefficient, which remains strongly coupled to the viscosity of the medium at the supercooled regime. These new findings can help to elucidate many experimental studies featuring molecular transport properties, where strong diffusion-viscosity decoupling is present.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...