Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(5): 054001, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800466

RESUMO

When small bubbles rupture in a contaminated water source, the resulting liquid jet breaks up into droplets that can aerosolize solid particulates such as bacteria, viruses, and microplastics. Particles collected on the bubble surface have the potential to become highly concentrated in the jet drops, dramatically increasing their impact. It has been assumed that only particles small enough to fit within a thin microlayer surrounding the bubble can be transported into its influential top jet drop. Yet here, we demonstrate that not only can larger particles be transported into this jet drop, but also that these particles can exceed previous enrichment measurements. Through experiments and simulations, we identify the prerupture location of the liquid that develops into the top jet drop and model how interfacial rearrangement combines with the bubble size, particle size, and the angular distribution of particles on the bubble surface to set the particle enrichment.

2.
Biofouling ; 37(3): 289-298, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33745417

RESUMO

It is well-established that hydrodynamics affect the settlement of biofouling organisms. Laboratory studies have demonstrated a connection between larval attachment rates and the prevalence of time windows that satisfy certain instantaneous flow conditions. However, it is unclear whether a link exists between short-term hydrodynamics and long-term macrofouling survival and growth, or if it is applicable at an ecosystem-wide level. This study used single bubble stream aeration in field and laboratory experiments to find critical flow characteristics that correlate to long-term, multi-species fouling prevention. The research was accomplished by combining PIV-derived flow statistics with fouling severity measured over seven weeks in the field. Flows with a decreasing proportion of time windows defined by a flow speed < 15.1 mm s-1 for longer than 0.03 s correlated to decreased biofouling growth and survival. These results provide a potential framework for studying and comparing flow fields that successfully inhibit biofouling growth.


Assuntos
Biofilmes , Incrustação Biológica , Incrustação Biológica/prevenção & controle , Ecossistema , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...