Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 5(2): e9401, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20195527

RESUMO

BACKGROUND: We have examined the genomic distribution of large rare autosomal deletions in a sample of 440 parent-parent-child trios from the Quebec founder population (QFP) which was recruited for a study of Attention Deficit Hyperactivity Disorder. METHODOLOGY/PRINCIPAL FINDINGS: DNA isolated from blood was genotyped on Illumina Hap300 arrays. PennCNV combined with visual evaluation of images generated by the Beadstudio program was used to determine deletion boundary definition of sufficient precision to discern independent events, with near-perfect concordance between parent and child in about 98% of the 399 events detected in the offspring; the remaining 7 deletions were considered de novo. We defined several genomic regions of very high deletion frequency ('hotspots'), usually of 0.4-0.6 Mb in length where independent rare deletions were found at frequencies of up to 100 fold higher than the average for the genome as a whole. Five of the 7 de novo deletions were in these hotspots. The same hotspots were also observed in three other studies on members of the QFP, those with schizophrenia, with endometriosis and those from a longevity cohort. CONCLUSIONS/SIGNIFICANCE: Nine of the 13 hotspots carry one gene (7 of which are very long), while the rest contain no known genes. All nine genes have been implicated in disease. The patterns of exon deletions support the proposed roles for some of these genes in human disease, such as NRXN1 and PARKIN, and suggest limited roles or no role at all, for others, including MACROD2 and CTNNA3. Our results also offer an alternative interpretation for the observations of deletions in tumors which have been proposed as reflecting tumor-suppressive activity of genes in these hotspots.


Assuntos
Predisposição Genética para Doença/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Deleção de Sequência , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Criança , Deleção Cromossômica , Cromossomos Humanos Par 20/genética , Feminino , Dosagem de Genes , Humanos , Masculino , Núcleo Familiar , Quebeque
2.
Biochemistry ; 48(25): 6012-21, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19496540

RESUMO

Faithful translation of the genetic code is mainly based on the specificity of tRNA aminoacylation catalyzed by aminoacyl-tRNA synthetases. These enzymes are comprised of a catalytic core and several appended domains. Bacterial glutamyl-tRNA synthetases (GluRS) contain five structural domains, the two distal ones interacting with the anticodon arm of tRNA(Glu). Thermus thermophilus GluRS requires the presence of tRNA(Glu) to bind ATP in the proper site for glutamate activation. In order to test the role of these two distal domains in this mechanism, we characterized the in vitro properties of the C-truncated Escherichia coli GluRSs N(1-313) and N(1-362), containing domains 1-3 and 1-4, respectively, and of their N-truncated complements GluRSs C(314-471) (containing domains 4 and 5) and C(363-471) (free domain 5). These C-truncated GluRSs are soluble, aminoacylate specifically tRNA(Glu), and require the presence of tRNA(Glu) to catalyze the activation of glutamate, as does full-length GluRS(1-471). The k(cat) of tRNA glutamylation catalyzed by N(1-362) is about 2000-fold lower than that catalyzed by the full-length E. coli GluRS(1-471). The addition of free domain 5 (C(363-471)) to N(1-362) strongly stimulates this k(cat) value, indicating that covalent connectivity between N(1-362) and domain 5 is not required for GluRS activity; the hyperbolic relationship between domain 5 concentration and this stimulation indicates that these proteins and tRNA(Glu) form a productive complex with a K(d) of about 100 microM. The K(d) values of tRNA(Glu) interactions with the full-length GluRS and with the truncated GluRSs N(1-362) and free domain 5 are 0.48, 0.11, and about 1.2 microM, respectively; no interaction was detected between these two complementary truncated GluRSs. These results suggest that in the presence of these truncated GluRSs, tRNA(Glu) is positioned for efficient aminoacylation by the two following steps: first, it interacts with GluRS N(1-362) via its acceptor-TPsiC stem loop domain and then with free domain 5 via its anticodon-Dstem-biloop domain, which appeared later during evolution. On the other hand, tRNA glutamylation catalyzed by N(1-313) is not stimulated by its complement C(314-471), revealing the importance of the covalent connectivity between domains 3 and 4 for GluRS aminoacylation activity. The K(m) values of N(1-313) and N(1-362) for each of their substrates are similar to those of full-length GluRS. These C-truncated GluRSs recognize only tRNA(Glu). These results confirm the modular nature of GluRS and support the model of a "recent" fusion of domains 4 and 5 to a proto-GluRS containing the catalytic domain and able to recognize its tRNA substrate(s).


Assuntos
Evolução Molecular , Deleção de Genes , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Sequência de Aminoácidos , Animais , Galinhas , Ativação Enzimática/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína/genética , Aminoacil-RNA de Transferência/genética , Especificidade por Substrato , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
3.
RNA Biol ; 4(2): 85-92, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17671438

RESUMO

Portions of E. coli tRNA(Glu) having identity determinants for glutamyl-tRNA synthetase (ERS, EC 6.1.1.17) have been designed to be the first RNA inhibitors of a Class I synthetase. ERS recognizes the 2-thionyl group of 2-thio-5-methylaminomethyluridine (mnm(5)s(2)U(34)) in the first or wobble anticodon position of E. coli tRNA(Glu). The interaction, as revealed by structural analysis, though specific, appears tenuous. Thus, it is surprising that RNAs designed from this tRNA's anticodon stem and loop domain with (ASL(Glu)-s(2)U(34)) and without s(2)U(34) are bound by ERS and inhibit aminoacylation of the native tRNA. ASL(Glu), ASL(Glu)-s(2)U(34), and a minihelix(Glu) composed of identity determinants of the amino acid accepting stem were thermally stable under conditions of aminoacylation (T(m)s = 75 +/- 1.5, 76 +/- 0.9 and 83 +/- 2.0 degrees C, respectively). In binding competition, the modified ASL(Glu)-s(2)U(34) bound ERS with a higher affinity (half maximal inhibiting concentration, IC(50), 5.1 +/- 0.4 microM) than its unmodified counterpart, ASL(Glu) (IC(50), 10.3 +/- 0.6 microM). The minihelix(Glu), ASL(Glu)-s(2)U(34) and ASL(Glu) bound ERS with K(d)s of 9.9 +/- 3.3, 6.5 +/- 1.7 and 20.5 +/- 3.8 microM. ERS aminoacylation of tRNA(Glu) was inhibited by the tRNA fragments. Unmodified ASL(Glu), minihelix(Glu), and ASL(Glu)-s(2)U(34) exhibited a K(ic) of 1.9 +/- 0.2 microM, 4.1 +/- 0.2 microM, and 6.5 +/- 0.1 microM, respectively. The modified ASL(Glu)-s(2)U(34), though having a higher affinity for ERS, may be released more readily and thus, not be as good an inhibitor as the unmodified ASL. Thus, the RNA constructs are effective tools to study RNA-protein interaction.


Assuntos
Anticódon/química , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/enzimologia , Glutamato-tRNA Ligase/antagonistas & inibidores , Sequência de Bases , Sítios de Ligação , Proteínas de Escherichia coli/metabolismo , Glutamato-tRNA Ligase/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Transferência/química , Termodinâmica , Aminoacilação de RNA de Transferência , Uridina/análogos & derivados , Uridina/química
4.
J Enzyme Inhib Med Chem ; 20(1): 61-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15895686

RESUMO

5'-O-[N-(L-glutamyl)-sulfamoyl] adenosine is a potent competitive inhibitor of E. coli glutamyl-tRNA synthetase with respect to glutamic acid (K(i) = 2.8 nM) and is the best inhibitor of this enzyme. It is a weaker inhibitor of mammalian glutamyl-tRNA synthetase (K(i) = 70 nM). The corresponding 5'-O-[N-(L-pyroglutamyl)-sulfamoyl] adenosine is a weak inhibitor (K(i) = 15 microM) of the E. coli enzyme.


Assuntos
Adenosina/análogos & derivados , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Glutamato-tRNA Ligase/antagonistas & inibidores , Adenosina/síntese química , Adenosina/farmacologia , Animais , Sítios de Ligação , Ligação Competitiva , Glutamato-tRNA Ligase/metabolismo , Fígado/enzimologia , Camundongos , RNA de Transferência de Ácido Glutâmico/metabolismo , Especificidade por Substrato
5.
Proc Natl Acad Sci U S A ; 101(20): 7530-5, 2004 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15096594

RESUMO

The product of the Escherichia coli yadB gene is homologous to the N-terminal part of bacterial glutamyl-tRNA synthetases (GluRSs), including the Rossmann fold with the acceptor-binding domain and the stem-contact fold. This GluRS-like protein, which lacks the anticodon-binding domain, does not use tRNA(Glu) as substrate in vitro nor in vivo, but aminoacylates tRNA(Asp) with glutamate. The yadB gene is expressed in wild-type E. coli as an operon with the dksA gene, which encodes a protein involved in the general stress response by means of its action at the translational level. The fate of the glutamylated tRNA(Asp) is not known, but its incapacity to bind elongation factor Tu suggests that it is not involved in ribosomal protein synthesis. Genes homologous to yadB are present only in bacteria, mostly in Proteobacteria. Sequence alignments and phylogenetic analyses show that the YadB proteins form a distinct monophyletic group related to the bacterial and organellar GluRSs (alpha-type GlxRSs superfamily) with ubiquitous function as suggested by the similar functional properties of the YadB homologue from Neisseria meningitidis.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácido Glutâmico/metabolismo , RNA de Transferência de Ácido Aspártico/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Filogenia , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo
6.
J Mol Biol ; 337(2): 273-83, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15003446

RESUMO

In the course of a structural genomics program aiming at solving the structures of Escherichia coli open reading frame products of unknown function, we have determined the structure of YadB at 1.5A using molecular replacement. The YadB protein is 298 amino acid residues long and displays 34% sequence identity with E.coli glutamyl-tRNA synthetase (GluRS). It is much shorter than GluRS, which contains 468 residues, and lacks the complete domain interacting with the tRNA anticodon loop. As E.coli GluRS, YadB possesses a Zn2+ located in the putative tRNA acceptor stem-binding domain. The YadB cluster uses cysteine residues as the first three zinc ligands, but has a weaker tyrosine ligand at the fourth position. It shares with canonical amino acid RNA synthetases a major functional feature, namely activation of the amino acid (here glutamate). It differs, however, from GluRSs by the fact that the activation step is tRNA-independent and that it does not catalyze attachment of the activated glutamate to E.coli tRNAGlu, but to another, as yet unknown tRNA. These results suggest thus a novel function, distinct from that of GluRSs, for the yadB gene family.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Genes Bacterianos , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Ácido Glutâmico/metabolismo , Cinética , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Conformação Proteica , RNA de Transferência de Ácido Glutâmico/metabolismo , Homologia de Sequência de Aminoácidos , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Zinco/metabolismo
7.
Eur J Biochem ; 271(4): 724-33, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14764088

RESUMO

In its tRNA acceptor end binding domain, the glutamyl-tRNA synthetase (GluRS) of Escherichia coli contains one atom of zinc that holds the extremities of a segment (Cys98-x-Cys100-x24-Cys125-x-His127) homologous to the Escherichia coli glutaminyl-tRNA synthetase (GlnRS) loop where a leucine residue stabilizes the peeled-back conformation of tRNAGln acceptor end. We report here that the GluRS zinc-binding region belongs to the novel SWIM domain family characterized by the signature C-x-C-xn-C-x-H (n = 6-25), and predicted to interact with DNA or proteins. In the presence of tRNAGlu, the GluRS C100Y variant has a lower affinity for l-glutamate than the wild-type enzyme, with Km and Kd values increased 12- and 20-fold, respectively. On the other hand, in the absence of tRNAGlu, glutamate binds with the same affinity to the C100Y variant and to wild-type GluRS. In the context of the close structural and mechanistic similarities between GluRS and GlnRS, these results indicate that the GluRS SWIM domain modulates glutamate binding to the active site via its interaction with the tRNAGlu acceptor arm. Phylogenetic analyses indicate that ancestral GluRSs had a strong zinc-binding site in their SWIM domain. Considering that all GluRSs require a cognate tRNA to activate glutamate, and that some of them have different or no putative zinc-binding residues in the corresponding positions, the properties of the C100Y variant suggest that the GluRS SWIM domains evolved to position correctly the tRNA acceptor end in the active site, thereby contributing to the formation of the glutamate binding site.


Assuntos
Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/enzimologia , Escherichia coli/genética , Glutamato-tRNA Ligase/genética , Ácido Glutâmico/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Zinco/química
8.
EMBO J ; 22(3): 676-88, 2003 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-12554668

RESUMO

Aminoacyl-tRNA synthetases catalyze the formation of an aminoacyl-AMP from an amino acid and ATP, prior to the aminoacyl transfer to tRNA. A subset of aminoacyl-tRNA synthetases, including glutamyl-tRNA synthetase (GluRS), have a regulation mechanism to avoid aminoacyl-AMP formation in the absence of tRNA. In this study, we determined the crystal structure of the 'non-productive' complex of Thermus thermophilus GluRS, ATP and L-glutamate, together with those of the GluRS.ATP, GluRS.tRNA.ATP and GluRS.tRNA.GoA (a glutamyl-AMP analog) complexes. In the absence of tRNA(Glu), ATP is accommodated in a 'non-productive' subsite within the ATP-binding site, so that the ATP alpha-phosphate and the glutamate alpha-carboxyl groups in GluRS. ATP.Glu are too far from each other (6.2 A) to react. In contrast, the ATP-binding mode in GluRS.tRNA. ATP is dramatically different from those in GluRS.ATP.Glu and GluRS.ATP, but corresponds to the AMP moiety binding mode in GluRS.tRNA.GoA (the 'productive' subsite). Therefore, tRNA binding to GluRS switches the ATP-binding mode. The interactions of the three tRNA(Glu) regions with GluRS cause conformational changes around the ATP-binding site, and allow ATP to bind to the 'productive' subsite.


Assuntos
Trifosfato de Adenosina/metabolismo , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Estrutura Terciária de Proteína , RNA de Transferência/metabolismo , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Genes Bacterianos , Glutamato-tRNA Ligase/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Ligação Proteica , RNA Bacteriano/metabolismo , Alinhamento de Sequência , Thermus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA