Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 160: 105533, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673149

RESUMO

Memory impairment is one of the disabling manifestations of multiple sclerosis (MS) possibly present from the early stages of the disease and for which there is no specific treatment. Hippocampal synaptic dysfunction and dendritic loss, associated with microglial activation, can underlie memory deficits, yet the molecular mechanisms driving such hippocampal neurodegeneration need to be elucidated. In early-stage experimental autoimmune encephalomyelitis (EAE) female mice, we assessed the expression level of molecules involved in microglia-neuron interactions within the dentate gyrus and found overexpression of genes of the complement pathway. Compared to sham immunized mice, the central element of the complement cascade, C3, showed the strongest and 10-fold upregulation, while there was no increase of downstream factors such as the terminal component C5. The combination of in situ hybridization with immunofluorescence showed that C3 transcripts were essentially produced by activated microglia. Pharmacological inhibition of C3 activity, by daily administration of rosmarinic acid, was sufficient to prevent early dendritic loss, microglia-mediated phagocytosis of synapses in the dentate gyrus, and memory impairment in EAE mice, while morphological markers of microglial activation were still observed. In line, when EAE was induced in C3 deficient mice (C3KO), dendrites and spines of the dentate gyrus as well as memory abilities were preserved. Altogether, these data highlight the central role of microglial C3 in early hippocampal neurodegeneration and memory impairment in EAE and, therefore, pave the way toward new neuroprotective strategies in MS to prevent cognitive deficit using complement inhibitors.


Assuntos
Complemento C3/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Degeneração Neural/metabolismo , Animais , Cinamatos/farmacologia , Complemento C3/antagonistas & inibidores , Complemento C3/genética , Convertases de Complemento C3-C5/farmacologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Depsídeos/farmacologia , Encefalomielite Autoimune Experimental/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Molibdoferredoxina , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Degeneração Neural/patologia , Fagocitose/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ácido Rosmarínico
2.
Cell Rep ; 27(13): 3860-3872.e4, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242419

RESUMO

Astrocytes constantly adapt their ramified morphology in order to support brain cell assemblies. Such plasticity is partly mediated by ion and water fluxes, which rely on the water channel aquaporin-4 (AQP4). The mechanism by which this channel locally contributes to process dynamics has remained elusive. Using a combination of single-molecule and calcium imaging approaches, we here investigated in hippocampal astrocytes the dynamic distribution of the AQP4 isoforms M1 and M23. Surface AQP4-M1 formed small aggregates that contrast with the large AQP4-M23 clusters that are enriched near glutamatergic synapses. Strikingly, stabilizing surface AQP4-M23 tuned the motility of astrocyte processes and favors glutamate synapse activity. Furthermore, human autoantibodies directed against AQP4 from neuromyelitis optica (NMO) patients impaired AQP4-M23 dynamic distribution and, consequently, astrocyte process and synaptic activity. Collectively, it emerges that the membrane dynamics of AQP4 isoform regulate brain cell assemblies in health and autoimmune brain disease targeting AQP4.


Assuntos
Aquaporina 4/imunologia , Astrócitos/imunologia , Hipocampo/imunologia , Neuromielite Óptica/imunologia , Sinapses/imunologia , Animais , Astrócitos/patologia , Autoanticorpos/imunologia , Cálcio/imunologia , Hipocampo/patologia , Humanos , Neuromielite Óptica/patologia , Transporte Proteico/imunologia , Ratos , Ratos Sprague-Dawley , Sinapses/patologia
3.
Neuroimage ; 172: 357-368, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29409838

RESUMO

The hippocampus contains distinct populations of neurons organized into separate anatomical subfields and layers with differential vulnerability to pathological mechanisms. The ability of in vivo neuroimaging to pinpoint regional vulnerability is especially important for better understanding of hippocampal pathology at the early stage of neurodegenerative disorders and for monitoring future therapeutic strategies. This is the case for instance in multiple sclerosis whose neurodegenerative component can affect the hippocampus from the early stage. We challenged the capacity of two models, i.e. the classical diffusion tensor imaging (DTI) model and the neurite orientation dispersion and density imaging (NODDI) model, to compute quantitative diffusion MRI that could capture microstructural alterations in the individual hippocampal layers of experimental-autoimmune encephalomyelitis (EAE) mice, the animal model of multiple sclerosis. To achieve this, the hippocampal anatomy of a healthy mouse brain was first explored ex vivo with high resolution DTI and NODDI. Then, 18 EAE mice and 18 control mice were explored 20 days after immunization with in vivo diffusion MRI prior to sacrifice for the histological quantification of neurites and glial markers in each hippocampal layer. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) maps were computed from the DTI model while the orientation dispersion index (ODI), the neurite density index (NDI) and the volume fraction of isotropic diffusivity (isoVF) maps were computed from the NODDI model. We first showed in control mice that color-coded FA and ODI maps can delineate three main hippocampal layers. The quantification of FA, AD, RD, MD, ODI, NDI and isoVF presented differences within these 3 layers, especially within the molecular layer of the dentate gyrus which displayed a specific signature based on a combination of AD (or MD), ODI and NDI. Then, the comparison between EAE and control mice showed a decrease of AD (p = 0.036) and of MD (p = 0.033) selectively within the molecular layer of EAE mice while NODDI indices did not present any difference between EAE and control mice in any layer. Histological analyses confirmed the differential vulnerability of the molecular layer of EAE mice that exhibited decreased dendritic length and decreased dendritic complexity together with activated microglia. Dendritic length and intersections within the molecular layer were independent contributors to the observed decrease of AD (R2 = 0.37 and R2 = 0.40, p < 0.0001) and MD (R2 = 0.41 and R2 = 0.42, p < 0.0001). We therefore identified that NODDI maps can help to highlight the internal microanatomy of the hippocampus but NODDI still presents limitations in grey matter as it failed to capture selective dendritic alterations occurring at early stages of a neurodegenerative disease such as multiple sclerosis, whereas DTI maps were significantly altered.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Hipocampo/patologia , Neuroimagem/métodos , Animais , Imagem de Tensor de Difusão/métodos , Feminino , Camundongos , Camundongos Endogâmicos C57BL
4.
Brain Behav Immun ; 60: 240-254, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27847283

RESUMO

Memory impairment is an early and disabling manifestation of multiple sclerosis whose anatomical and biological substrates are still poorly understood. We thus investigated whether memory impairment encountered at the early stage of the disease could be explained by a differential vulnerability of particular hippocampal subfields. By using experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, we identified that early memory impairment was associated with selective alteration of the dentate gyrus as pinpointed in vivo with diffusion-tensor-imaging (DTI). Neuromorphometric analyses and electrophysiological recordings confirmed dendritic degeneration, alteration in glutamatergic synaptic transmission and impaired long-term synaptic potentiation selectively in the dentate gyrus, but not in CA1, together with a more severe pattern of microglial activation in this subfield. Systemic injections of the microglial inhibitor minocycline prevented DTI, morphological, electrophysiological and behavioral impairments in EAE-mice. Furthermore, daily infusions of minocycline specifically within the dentate gyrus were sufficient to prevent memory impairment in EAE-mice while infusions of minocycline within CA1 were inefficient. We conclude that early memory impairment in EAE is due to a selective disruption of the dentate gyrus associated with microglia activation. These results open new pathophysiological, imaging, and therapeutic perspectives for memory impairment in multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Potenciação de Longa Duração/fisiologia , Transtornos da Memória/metabolismo , Esclerose Múltipla/complicações , Animais , Giro Denteado/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA