Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764281

RESUMO

Increased life expectancy in industrialized countries is causing an increased incidence of osteoporosis and the need for bioactive bone implants. The integration of implants can be improved physically, but mainly by chemical modifications of the material surface. It was recognized that amino-group-containing coatings improved cell attachment and intracellular signaling. The aim of this study was to determine the role of the amino group density in this positive cell behavior by developing controlled amino-rich nanolayers. This work used covalent grafting of polymer-based nanocoatings with different amino group densities. Titanium coated with the positively-charged trimethoxysilylpropyl modified poly(ethyleneimine) (Ti-TMS-PEI), which mostly improved cell area after 30 min, possessed the highest amino group density with an N/C of 32%. Interestingly, changes in adhesion-related genes on Ti-TMS-PEI could be seen after 4 h. The mRNA microarray data showed a premature transition of the MG-63 cells into the beginning differentiation phase after 24 h indicating Ti-TMS-PEI as a supportive factor for osseointegration. This amino-rich nanolayer also induced higher bovine serum albumin protein adsorption and caused the cells to migrate slower on the surface after a more extended period of cell settlement as an indication of a better surface anchorage. In conclusion, the cell spreading on amine-based nanocoatings correlated well with the amino group density (N/C).


Assuntos
Aminas , Osteoblastos , Adsorção , Diferenciação Celular , Países Desenvolvidos
2.
Front Bioeng Biotechnol ; 8: 1016, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015006

RESUMO

Electrostatic forces at the cell interface affect the nature of cell adhesion and function; but there is still limited knowledge about the impact of positive or negative surface charges on cell-material interactions in regenerative medicine. Titanium surfaces with a variety of zeta potentials between -90 mV and +50 mV were generated by functionalizing them with amino polymers, extracellular matrix proteins/peptide motifs and polyelectrolyte multilayers. A significant enhancement of intracellular calcium mobilization was achieved on surfaces with a moderately positive (+1 to +10 mV) compared with a negative zeta potential (-90 to -3 mV). Dramatic losses of cell activity (membrane integrity, viability, proliferation, calcium mobilization) were observed on surfaces with a highly positive zeta potential (+50 mV). This systematic study indicates that cells do not prefer positive charges in general, merely moderately positive ones. The cell behavior of MG-63s could be correlated with the materials' zeta potential; but not with water contact angle or surface free energy. Our findings present new insights and provide an essential knowledge for future applications in dental and orthopedic surgery.

3.
ACS Appl Mater Interfaces ; 9(12): 10461-10471, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28296389

RESUMO

Topographical and chemical features of biomaterial surfaces affect the cell physiology at the interface and are promising tools for the improvement of implants. The dominance of the surface topography on cell behavior is often accentuated. Striated surfaces induce an alignment of cells and their intracellular adhesion-mediated components. Recently, it could be demonstrated that a chemical modification via plasma polymerized allylamine was not only able to boost osteoblast cell adhesion and spreading but also override the cell alignment on stochastically machined titanium. In order to discern what kind of chemical surface modifications let the cell forget the underlying surface structure, we used an approach on geometric microgrooves produced by deep reactive ion etching (DRIE). In this study, we systematically investigated the surface modification by (i) methyl-, carboxyl-, and amino functionalization created via plasma polymerization processes, (ii) coating with the extracellular matrix protein collagen-I or immobilization of the integrin adhesion peptide sequence Arg-Gly-Asp (RGD), and (iii) treatment with an atmospheric pressure plasma jet operating with argon/oxygen gas (Ar/O2). Interestingly, only the amino functionalization, which presented positive charges at the surface, was able to chemically disguise the microgrooves and therefore to interrupt the microtopography induced contact guidance of the osteoblastic cells MG-63. However, the RGD peptide coating revealed enhanced cell spreading as well, with fine, actin-containing protrusions. The Ar/O2-functionalization demonstrated the best topography handling, e.g. cells closely attached even to features such as the sidewalls of the groove steps. In the end, the amino functionalization is unique in abrogating the cell contact guidance.


Assuntos
Adesão Celular , Materiais Biocompatíveis , Osteoblastos , Propriedades de Superfície , Titânio
4.
Steroids ; 67(10): 835-49, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12231119

RESUMO

Copper is next to iron the most important element in the biological transport, storage and in redox reactions of dioxygen. A bioanalogous activation of dioxygen with copper complexes is used for catalytical epoxidation, allylic hydroxylation and oxidative coupling of aromatic substrates, for example. With stereochemical information in form of chiral ligands, enantioselective reactions may be possible. Another aspect of interest on copper catalyzed reactions with dioxygen is that the exact mechanism and biological function of some enzymes (especially catechol oxidase) is yet not fully clear. For studies mimicking the copper-containing catechol oxidase appropriate chiral steroid ligands with defined stereochemistry and conformation have been synthesized. The four diastereomeric 16,17-aminoalcohols of the 3-methoxy-estra-1,3,5(10)-triene series have been condensed with salicylic aldehyde and different beta-ketoenols to the chiral ligand types 1-5. These compounds with different steric and electronic properties and different arrangements of the neighboring hydroxy and nitrogen functions were reacted with copper(II) acetate to copper complexes. The structure of these complexes will be discussed. The bioanalogous oxidation of 3,5-di-tbutyl-catechol (dtbc) to the corresponding quinone was catalyzed by most of the complexes, indicating their ability to activate dioxygen. The trans configurations c and d showed an activity one magnitude higher than the cis configurations a and b. Comparing compounds with the same diastereomeric configuration, the main influence was that of the peripheral R(1-3) substituents at the beta-ketoenaminic group which are useful for the fine-tuning of the properties of the copper atoms like redox potential and Lewis acidity.


Assuntos
Catecol Oxidase/química , Cobre/química , Modelos Moleculares , Esteroides/síntese química , Aminas/química , Catálise , Catecóis/química , Cristalografia por Raios X , Cinética , Ligantes , Estrutura Molecular , Estereoisomerismo , Esteroides/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...