Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 11(6): 2802-2820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249429

RESUMO

Prostate cancer (PCa) is the most commonly diagnosed male malignancy worldwide. Early diagnosis and metastases detection are crucial features to diminish patient mortality. High fat diet (HFD) and metabolic syndrome increase PCa risk and aggressiveness. Our goal was to identify miRNAs-based biomarkers for PCa diagnosis and prognosis associated with HFD. Mice chronically fed with a HFD or control diet (CD) were subcutaneously inoculated with androgen insensitive PC3 cells. Xenografts from HFD-fed mice showed increased expression of 7 miRNAs that we named "candidates" compared to CD-fed mice. These miRNAs modulate specific metabolic and cancer related pathways. Using bioinformatic tools and human datasets we found that hsa-miR-19b-3p and miR-101-3p showed more than 1,100 validated targets involved in proteoglycans in cancer and fatty acid biosynthesis. These miRNAs were significantly increased in the bloodstream of PCa patients compared to non-PCa volunteers, and in prostate tumors compared to normal adjacent tissues (NAT). Interestingly, both miRNAs were also increased in tumors of metastatic patients compared to tumors of non-metastatic patients. Further receiver-operating characteristic (ROC) analysis determined that hsa-miR-19b-3p and hsa-miR-101-3p in serum showed poor predictive power to discriminate PCa from non-PCa patients. Hsa-miR-19b-3p showed the best score to discriminate between tumor and NAT, while hsa-miR-101-3p was useful to differentiate between metastatic and non-metastatic PCa patients. Hsa-miR-101-3p was increased in exosomes isolated from blood of PCa patients. Although more detailed functional exploration and validation of the molecular mechanisms are required, we identified hsa-miR-19b-3p and hsa-miR-101-3p with high potential for PCa diagnosis and prognosis.

2.
Oncotarget ; 9(17): 13848-13858, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29568399

RESUMO

Metastatic breast cancer (BrCa) is still one of the main causes of cancer death in women. Metabolic syndrome (MeS), a risk factor for BrCa, is associated to high grade tumors, increased metastasis and recurrence of this disease. C-terminal binding protein 1 (CTBP1) is a co-repressor of tumor suppressor genes that is activated by low NAD+/NADH ratio. Previously, we demonstrated that CTBP1 hyperactivation by MeS increased tumor growth in MDA-MB-231-derived xenografts regulating several genes and miRNAs. In this work, our aim was to elucidate the role of CTBP1 and MeS in BrCa metastasis. We found that CTBP1 protein diminished adhesion while increased migration of triple negative BrCa cells. CTBP1 and MeS modulated the expression of multiple genes (ITGB4, ITGB6, PRSS2, COL17A1 and FABP4) and miRNAs (miR-378a-3p, miR-146a-5p, let-7e-3p, miR-381-5p, miR-194-5p, miR-494-3p) involved in BrCa progression of MDA-MB-231-derived xenografts. Furthermore, we demonstrated that MeS increased lung micrometastasis and liver neoplastic disease in mice. CTBP1 hyperactivation seems to be critical for MeS effect on BrCa metastasis since CTBP1 depletion completely impaired the detection of circulating tumor cells. Our results highlight CTBP1 and MeS impact on BrCa progression positioning them as key properties to be considered for BrCa patient prognosis and management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...