Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health ; 21(1): 46, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35501856

RESUMO

BACKGROUND: Dietary habits have a profound influence on the metabolic activity of gut microorganisms and their influence on health. Concerns have been raised as to whether the consumption of foodstuffs contaminated with pesticides can contribute to the development of chronic disease by affecting the gut microbiome. We performed the first pesticide biomonitoring survey of the British population, and subsequently used the results to perform the first pesticide association study on gut microbiome composition and function from the TwinsUK registry. METHODS: Dietary exposure of 186 common insecticide, herbicide, or fungicide residues and the faecal microbiome in 65 twin pairs in the UK was investigated. We evaluated if dietary habits, geographic location, or the rural/urban environment, are associated with the excretion of pesticide residues. The composition and metabolic activity of faecal microbiota was evaluated using shotgun metagenomics and metabolomics respectively. We performed a targeted urine metabolomics analysis in order to evaluate whether pesticide urinary excretion was also associated with physiological changes. RESULTS: Pyrethroid and/or organophosphorus insecticide residues were found in all urine samples, while the herbicide glyphosate was found in 53% of individuals. Food frequency questionnaires showed that residues from organophosphates were higher with increased consumption of fruit and vegetables. A total of 34 associations between pesticide residue concentrations and faecal metabolite concentrations were detected. Glyphosate excretion was positively associated with an overall increased bacterial species richness, as well as to fatty acid metabolites and phosphate levels. The insecticide metabolite Br2CA, reflecting deltamethrin exposure, was positively associated with the phytoestrogens enterodiol and enterolactone, and negatively associated with some N-methyl amino acids. Urine metabolomics performed on a subset of samples did not reveal associations with the excretion of pesticide residues. CONCLUSIONS: The consumption of conventionally grown fruit and vegetables leads to higher ingestion of pesticides with unknown long-term health consequences. Our results highlight the need for future dietary intervention studies to understand effects of pesticide exposure on the gut microbiome and possible health consequences.


Assuntos
Herbicidas , Inseticidas , Microbiota , Resíduos de Praguicidas , Praguicidas , Adulto , Exposição Dietética/análise , Herbicidas/análise , Humanos , Inseticidas/análise , Compostos Organofosforados , Resíduos de Praguicidas/análise , Verduras/química
2.
Commun Biol ; 4(1): 471, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854195

RESUMO

Health effects of pesticides are not always accurately detected using the current battery of regulatory toxicity tests. We compared standard histopathology and serum biochemistry measures and multi-omics analyses in a subchronic toxicity test of a mixture of six pesticides frequently detected in foodstuffs (azoxystrobin, boscalid, chlorpyrifos, glyphosate, imidacloprid and thiabendazole) in Sprague-Dawley rats. Analysis of water and feed consumption, body weight, histopathology and serum biochemistry showed little effect. Contrastingly, serum and caecum metabolomics revealed that nicotinamide and tryptophan metabolism were affected, which suggested activation of an oxidative stress response. This was not reflected by gut microbial community composition changes evaluated by shotgun metagenomics. Transcriptomics of the liver showed that 257 genes had their expression changed. Gene functions affected included the regulation of response to steroid hormones and the activation of stress response pathways. Genome-wide DNA methylation analysis of the same liver samples showed that 4,255 CpG sites were differentially methylated. Overall, we demonstrated that in-depth molecular profiling in laboratory animals exposed to low concentrations of pesticides allows the detection of metabolic perturbations that would remain undetected by standard regulatory biochemical measures and which could thus improve the predictability of health risks from exposure to chemical pollutants.


Assuntos
Trato Gastrointestinal/metabolismo , Fígado/metabolismo , Praguicidas/toxicidade , Animais , Relação Dose-Resposta a Droga , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Metabolômica , Fenótipo , Ratos , Ratos Sprague-Dawley
3.
Environ Health Perspect ; 129(1): 17005, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33502259

RESUMO

BACKGROUND: There is intense debate on whether glyphosate can inhibit the shikimate pathway of gastrointestinal microorganisms, with potential health implications. OBJECTIVES: We tested whether glyphosate or its representative EU herbicide formulation Roundup MON 52276 affects the rat gut microbiome. METHODS: We combined cecal microbiome shotgun metagenomics with serum and cecum metabolomics to assess the effects of glyphosate [0.5, 50, 175mg/kg body weight (BW) per day] or MON 52276 at the same glyphosate-equivalent doses, in a 90-d toxicity test in rats. RESULTS: Glyphosate and MON 52276 treatment resulted in ceca accumulation of shikimic acid and 3-dehydroshikimic acid, suggesting inhibition of 5-enolpyruvylshikimate-3-phosphate synthase of the shikimate pathway in the gut microbiome. Cysteinylglycine, γ-glutamylglutamine, and valylglycine levels were elevated in the cecal microbiome following glyphosate and MON 52276 treatments. Altered cecum metabolites were not differentially expressed in serum, suggesting that the glyphosate and MON 52276 impact on gut microbial metabolism had limited consequences on physiological biochemistry. Serum metabolites differentially expressed with glyphosate treatment were associated with nicotinamide, branched-chain amino acid, methionine, cysteine, and taurine metabolism, indicative of a response to oxidative stress. MON 52276 had similar, but more pronounced, effects than glyphosate on the serum metabolome. Shotgun metagenomics of the cecum showed that treatment with glyphosate and MON 52276 resulted in higher levels of Eggerthella spp., Shinella zoogleoides, Acinetobacter johnsonii, and Akkermansia muciniphila. Shinella zoogleoides was higher only with MON 52276 exposure. In vitro culture assays with Lacticaseibacillus rhamnosus strains showed that Roundup GT plus inhibited growth at concentrations at which MON 52276 and glyphosate had no effect. DISCUSSION: Our study highlights the power of multi-omics approaches to investigate the toxic effects of pesticides. Multi-omics revealed that glyphosate and MON 52276 inhibited the shikimate pathway in the rat gut microbiome. Our findings could be used to develop biomarkers for epidemiological studies aimed at evaluating the effects of glyphosate herbicides on humans. https://doi.org/10.1289/EHP6990.


Assuntos
Sangue/metabolismo , Microbioma Gastrointestinal , Glicina/análogos & derivados , Herbicidas , Metabolômica , Metagenômica , Acinetobacter , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Glicina/toxicidade , Herbicidas/toxicidade , Metaboloma/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...