Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34300513

RESUMO

Large cities have a significant area of buildings with roofs that are not used most of the time. Vertical-axis wind turbines are suitable for this kind of on-site renewable energy generation. Since wind speeds are not high in these cities, a suitable solution to improve energy generation is to add a Wind Booster. This paper presents a methodology useful for selecting and optimizing the main components of a Wind Booster. As a case of study, we present this methodology in a Wind Booster for a Vertical Axis Wind Turbine (VAWT) that considers the wind flow's specific behavior in a particular city. The final Wind Booster design is state of the art and makes use of Computational Fluid Dynamics (CFD) and Design of Experiments (DOE) techniques. We experimented with the conditions of Mexico City, obtaining a 35.23% increase in torque with the optimized Wind Booster configuration. The results obtained show the potential of this methodology to improve the performance of this kind of system. Moreover, since wind behavior is very different in each city, our proposal could be beneficial for researchers looking to implement the best possible wind turbine in their locality.

2.
Sensors (Basel) ; 22(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009606

RESUMO

In this work we describe a system composed of deep neural networks that analyzes characteristics of customers based on their face (age, gender, and personality), as well as the ambient temperature, with the purpose of generating a personalized signal to potential buyers who pass in front of a beverage establishment; faces are automatically detected, displaying a recommendation using deep learning methods. In order to present suitable digital posters for each person, several technologies were used: Augmented reality, estimation of age, gender, and estimation of personality through the Big Five test applied to an image. The accuracy of each one of these deep neural networks is measured separately to ensure an appropriate precision over 80%. The system has been implemented into a portable solution, and is able to generate a recommendation to one or more people at the same time.


Assuntos
Realidade Aumentada , Aprendizado Profundo , Publicidade , Humanos , Redes Neurais de Computação
3.
Sensors (Basel) ; 20(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957671

RESUMO

Surrogate Modeling (SM) is often used to reduce the computational burden of time-consuming system simulations. However, continuous advances in Artificial Intelligence (AI) and the spread of embedded sensors have led to the creation of Digital Twins (DT), Design Mining (DM), and Soft Sensors (SS). These methodologies represent a new challenge for the generation of surrogate models since they require the implementation of elaborated artificial intelligence algorithms and minimize the number of physical experiments measured. To reduce the assessment of a physical system, several existing adaptive sequential sampling methodologies have been developed; however, they are limited in most part to the Kriging models and Kriging-model-based Monte Carlo Simulation. In this paper, we integrate a distinct adaptive sampling methodology to an automated machine learning methodology (AutoML) to help in the process of model selection while minimizing the system evaluation and maximizing the system performance for surrogate models based on artificial intelligence algorithms. In each iteration, this framework uses a grid search algorithm to determine the best candidate models and perform a leave-one-out cross-validation to calculate the performance of each sampled point. A Voronoi diagram is applied to partition the sampling region into some local cells, and the Voronoi vertexes are considered as new candidate points. The performance of the sample points is used to estimate the accuracy of the model for a set of candidate points to select those that will improve more the model's accuracy. Then, the number of candidate models is reduced. Finally, the performance of the framework is tested using two examples to demonstrate the applicability of the proposed method.

4.
Sensors (Basel) ; 19(23)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801291

RESUMO

Nowadays, more than half of the world's population lives in urban areas, and this number continues increasing. Consequently, there are more and more scientific publications that analyze health problems of people associated with living in these highly urbanized locations. In particular, some of the recent work has focused on relating people's health to the quality and quantity of urban green areas. In this context, and considering the huge amount of land area in large cities that must be supervised, our work seeks to develop a deep learning-based solution capable of determining the level of health of the land and to assess whether it is contaminated. The main purpose is to provide health institutions with software capable of creating updated maps that indicate where these phenomena are presented, as this information could be very useful to guide public health goals in large cities. Our software is released as open source code, and the data used for the experiments presented in this paper are also freely available.


Assuntos
Aprendizado Profundo , Tecnologia de Sensoriamento Remoto/métodos , Biomassa , Monitoramento Ambiental/métodos , Humanos , Software
5.
Sensors (Basel) ; 19(6)2019 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-30884877

RESUMO

In this paper, a deep neural network based model for a set of small-scale magnetorheological dampers (MRD) is developed where relevant parameters that have a physical meaning are inputs to the model. An experimental platform and a 3D-printing rapid prototyping facility provided a set of different conditions including MRD filled with two different MR fluids, which were used to train a Deep Neural Network (DNN), which is the core of the proposed model. Testing results indicate the model could forecast the hysteretic response of magnetorheological dampers for different load conditions and various physical configurations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA