Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 155(17): 174201, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34742181

RESUMO

We present a 2D-Raman-terahertz (THz) setup with multichannel (single-shot) THz detection, utilizing two crossed echelons, in order to reduce the acquisition time of typical 2D-Raman-THz experiments from days to a few hours. This speed-up is obtained in combination with a high repetition rate (100 kHz) Yb-based femtosecond laser system and a correspondingly fast array detector. The wavelength of the Yb-laser (1030 nm) is advantageous, since it assures almost perfect phase matching in GaP for THz generation and detection and since the dispersion in the transmissive echelons is minimal. 2D-Raman-THz test measurements on liquid bromoform (CHBr3) are reported. An enhancement of a factor ∼5.8 in signal-to-noise ratio is obtained for single-shot detection when compared to conventional step-scanning measurements in the THz time domain, corresponding to a speed-up of acquisition time of ∼34.

5.
J Phys Chem B ; 123(22): 4745-4756, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31067404

RESUMO

The ultrafast dynamics of a bimolecular excited-state proton transfer (ESPT) reaction between the photoacid 7-hydroxy-4-(trifluoromethyl)-1-coumarin (CouOH) and 1-methylimidazole (MI) base in aprotic chloroform- d1 solution were investigated using ultrafast transient infrared (TRIR) and transient absorption (TA) spectroscopies. The excited-state lifetime of the photoacid in solution is relatively short (52 ps), which at the millimolar photoacid and base concentrations used in our study precludes any diffusion-controlled bimolecular ESPT reactions. This allows the prompt ESPT reaction between hydrogen-bonded CouOH and MI molecules to be studied in isolation and the "contact" ESPT dynamics to be unambiguously determined. Our time-resolved studies reveal that ultrafast ESPT from the CouOH moiety to hydrogen-bonded MI molecules occurs within ∼1 ps, tracked by unequivocal spectroscopic signatures of CouO-* photoproducts that are formed in tandem with HMI+. Some of the ESPT photoproducts subsequently π-stack to form exciplexes on a ∼35 ps time scale, minimizing the attractive Coulombic forces between the oppositely charged aromatic molecules. For the concentrations of CouOH and MI used in our study (up to 8 mM), we saw no evidence for excited-state tautomerization of coumarin anions.

6.
Phys Chem Chem Phys ; 21(26): 14407-14417, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30869082

RESUMO

An understanding of the initial photoexcited states of DNA is essential to unravelling deleterious photoinduced chemical reactions and the intrinsic ultrafast photoprotection of the genetic code for all life. In our combined experimental and theoretical study, we have elucidated the primary non-radiative relaxation dynamics of a model nucleotide of guanine and thymine (2'-deoxyguanosine 3'-monophosphate 5'-thymidine, d(GpT)) in buffered aqueous solution. Experimentally, we unequivocally demonstrate that the Franck-Condon excited states of d(GpT) are significantly delocalised across both nucleobases, and mediate d(G+pT-) exciplex product formation on an ultrafast (<350 fs) timescale. Theoretical studies show that the nature of the vertical excited states is very dependent on the specific geometry of the dinucleotide, and dictate the degree of delocalised, charge-transfer or localised character. Our mechanism for prompt exciplex formation involves a rapid change in electronic structure and includes a diabatic surface crossing very close to the Franck-Condon region mediating fast d(G+pT-) formation. Exciplexes are quickly converted back to neutral ground state molecules on a ∼10 ps timescale with a high quantum yield, ensuring the photostability of the nucleotide sequence.


Assuntos
Guanina/química , Teoria Quântica , Termodinâmica , Timina/química , Raios Ultravioleta , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos
7.
Angew Chem Int Ed Engl ; 58(13): 4334-4338, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30682233

RESUMO

The polymorphic nature of G-quadruplex (G4) DNA structures points to a range of potential applications in nanodevices and an opportunity to control G4 in biological settings. Light is an attractive means for the regulation of oligonucleotide structure as it can be delivered with high spatiotemporal precision. However, surprisingly little attention has been devoted towards the development of ligands for G4 that allow photoregulation of G4 folding. We report a novel G4-binding chemotype derived from stiff-stilbene. Surprisingly however, whilst the ligand induces high stabilization in the potassium form of human telomeric DNA, it causes the unfolding of the same G4 sequence in sodium buffer. This effect can be reversed on demand by irradiation with 400 nm light through deactivation of the ligand by photo-oxidation. By fuelling the system with the photolabile ligand, the conformation of G4 DNA was switched five times.


Assuntos
DNA/química , Quadruplex G/efeitos da radiação , Estilbenos/química , Telômero/química , DNA/efeitos da radiação , Humanos , Ligantes , Estilbenos/efeitos da radiação , Telômero/efeitos da radiação
8.
Phys Chem Chem Phys ; 21(26): 14042-14052, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30652179

RESUMO

Ammonia and amines are emitted into the troposphere by various natural and anthropogenic sources, where they have a significant role in aerosol formation. Here, we explore the significance of their removal by reaction with Criegee intermediates, which are produced in the troposphere by ozonolysis of alkenes. Rate coefficients for the reactions of two representative Criegee intermediates, formaldehyde oxide (CH2OO) and acetone oxide ((CH3)2COO) with NH3 and CH3NH2 were measured using cavity ring-down spectroscopy. Temperature-dependent rate coefficients, k(CH2OO + NH3) = (3.1 ± 0.5) × 10-20T2 exp(1011 ± 48/T) cm3 s-1 and k(CH2OO + CH3NH2) = (5 ± 2) × 10-19T2 exp(1384 ± 96/T) cm3 s-1 were obtained in the 240 to 320 K range. Both the reactions of CH2OO were found to be independent of pressure in the 10 to 100 Torr (N2) range, and average rate coefficients k(CH2OO + NH3) = (8.4 ± 1.2) × 10-14 cm3 s-1 and k(CH2OO + CH3NH2) = (5.6 ± 0.4) × 10-12 cm3 s-1 were deduced at 293 K. An upper limit of ≤2.7 × 10-15 cm3 s-1 was estimated for the rate coefficient of the (CH3)2COO + NH3 reaction. Complementary measurements were performed with mass spectrometry using synchrotron radiation photoionization giving k(CH2OO + CH3NH2) = (4.3 ± 0.5) × 10-12 cm3 s-1 at 298 K and 4 Torr (He). Photoionization mass spectra indicated production of NH2CH2OOH and CH3N(H)CH2OOH functionalized organic hydroperoxide adducts from CH2OO + NH3 and CH2OO + CH3NH2 reactions, respectively. Ab initio calculations performed at the CCSD(T)(F12*)/cc-pVQZ-F12//CCSD(T)(F12*)/cc-pVDZ-F12 level of theory predicted pre-reactive complex formation, consistent with previous studies. Master equation simulations of the experimental data using the ab initio computed structures identified submerged barrier heights of -2.1 ± 0.1 kJ mol-1 and -22.4 ± 0.2 kJ mol-1 for the CH2OO + NH3 and CH2OO + CH3NH2 reactions, respectively. The reactions of NH3 and CH3NH2 with CH2OO are not expected to compete with its removal by reaction with (H2O)2 in the troposphere. Similarly, losses of NH3 and CH3NH2 by reaction with Criegee intermediates will be insignificant compared with reactions with OH radicals.

9.
Nanoscale ; 10(29): 13908-13912, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29999508

RESUMO

Biomolecule functionalisation of carbon nano-dots (CDs) greatly enhances their biocompatibility and applicability, however, little is known about their molecular structure. Using an arsenal of spectroscopic and analytical techniques, we provide new insights into the physical and electronic structure of uncoated and glycan-functionalised CDs. Our studies reveal that surface functionalisation does not always result in a homogenous corona surrounding the core, and the choice of carbohydrate significantly affects the electronic structure of the surface CD states. Further, the average surface coverage of an ensemble of CDs can be probed via transient absorption spectroscopy. These findings have implications for CDs targeted at interactions with biological systems or local sensors.

10.
J Phys Chem Lett ; 9(4): 895-901, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29389137

RESUMO

Organic cation rotation in hybrid organic-inorganic lead halide perovskites has previously been associated with low charge recombination rates and (anti)ferroelectric domain formation. Two-dimensional infrared spectroscopy (2DIR) was used to directly measure 470 ± 50 fs and 2.8 ± 0.5 ps time constants associated with the reorientation of formamidinium cations (FA+, NH2CHNH2+) in formamidinium lead iodide perovskite thin films. Molecular dynamics simulations reveal the FA+ agitates about an equilibrium position, with NH2 groups pointing at opposite faces of the inorganic lattice cube, and undergoes 90° flips on picosecond time scales. Time-resolved infrared measurements revealed a prominent vibrational transient feature arising from a vibrational Stark shift: photogenerated charge carriers increase the internal electric field of perovskite thin films, perturbing the FA+ antisymmetric stretching vibrational potential, resulting in an observed 5 cm-1 shift. Our 2DIR results provide the first direct measurement of FA+ rotation inside thin perovskite films, and cast significant doubt on the presence of long-lived (anti)ferroelectric domains, which the observed low charge recombination rates have been attributed to.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...