Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(3)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992408

RESUMO

Emerging RNA virus infections are a growing concern among domestic poultry industries due to the severe impact they can have on flock health and economic livelihoods. Avian paramyxoviruses (APMV; avulaviruses, AaV) are pathogenic, negative-sense RNA viruses that cause serious infections in the respiratory and central nervous systems. APMV was detected in multiple avian species during the 2017 wild bird migration season in Ukraine and studied using PCR, virus isolation, and sequencing. Of 4090 wild bird samples collected, mostly from southern Ukraine, eleven isolates were grown in ovo and identified for APMV serotype by hemagglutinin inhibition test as: APMV-1, APMV-4, APMV-6, and APMV-7. To build One Health's capacity to characterize APMV virulence and analyze the potential risks of spillover to immunologically naïve populations, we sequenced virus genomes in veterinary research labs in Ukraine using a nanopore (MinION) platform. RNA was extracted and amplified using a multiplex tiling primer approach to specifically capture full-length APMV-1 (n = 5) and APMV-6 (n = 2) genomes at high read depth. All APMV-1 and APMV-6 fusion (F) proteins possessed a monobasic cleavage site, suggesting these APMVs were likely low virulence, annually circulating strains. Utilization of this low-cost method will identify gaps in viral evolution and circulation in this understudied but important critical region for Eurasia.


Assuntos
Avulavirus , Vírus da Doença de Newcastle , Animais , Ucrânia/epidemiologia , Filogenia , Animais Selvagens , Aves
2.
Microbiol Resour Announc ; 9(49)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273001

RESUMO

The complete genome of Salmonella enterica subsp. enterica serovar Kottbus strain Kharkiv (serogroup C2-C3), which was isolated from a commercial pork production facility in Kharkiv, Ukraine, was assembled using long-read Nanopore sequences. A single circular contig (4,799,045 bp) comprised a complete chromosome encoding antibiotic resistance, highlighting the risk of cross-species livestock and human infection.

4.
Gigascience ; 9(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32520351

RESUMO

BACKGROUND: Riverine ecosystems are biogeochemical powerhouses driven largely by microbial communities that inhabit water columns and sediments. Because rivers are used extensively for anthropogenic purposes (drinking water, recreation, agriculture, and industry), it is essential to understand how these activities affect the composition of river microbial consortia. Recent studies have shown that river metagenomes vary considerably, suggesting that microbial community data should be included in broad-scale river ecosystem models. But such ecogenomic studies have not been applied on a broad "aquascape" scale, and few if any have applied the newest nanopore technology. RESULTS: We investigated the metagenomes of 11 rivers across 3 continents using MinION nanopore sequencing, a portable platform that could be useful for future global river monitoring. Up to 10 Gb of data per run were generated with average read lengths of 3.4 kb. Diversity and diagnosis of river function potential was accomplished with 0.5-1.0 ⋅ 106 long reads. Our observations for 7 of the 11 rivers conformed to other river-omic findings, and we exposed previously unrecognized microbial biodiversity in the other 4 rivers. CONCLUSIONS: Deeper understanding that emerged is that river microbial consortia and the ecological functions they fulfil did not align with geographic location but instead implicated ecological responses of microbes to urban and other anthropogenic effects, and that changes in taxa manifested over a very short geographic space.


Assuntos
Metagenoma , Metagenômica/métodos , Consórcios Microbianos , Microbiota , Plâncton/genética , Biodiversidade , Sequenciamento por Nanoporos , Rios/microbiologia , Microbiologia da Água
5.
Biochim Biophys Acta Bioenerg ; 1861(10): 148252, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32569664

RESUMO

The three presently known enzymes responsible for arsenic-using bioenergetic processes are arsenite oxidase (Aio), arsenate reductase (Arr) and alternative arsenite oxidase (Arx), all of which are molybdoenzymes from the vast group referred to as the Mo/W-bisPGD enzyme superfamily. Since arsenite is present in substantial amounts in hydrothermal environments, frequently considered as vestiges of primordial biochemistry, arsenite-based bioenergetics has long been predicted to be ancient. Conflicting scenarios, however, have been put forward proposing either Arr/Arx or Aio as operating in the ancestral metabolism. Phylogenetic data argue in favor of Aio whereas biochemical and physiological data led several authors to propose Arx/Arr as the most ancient anaerobic arsenite metabolizing enzymes. Here we combine phylogenetic approaches with physiological and biochemical experiments to demonstrate that the Arx/Arr enzymes could not have been functional in the Archaean geological eon. We propose that Arr reacts with menaquinones to reduce arsenate whereas Arx reacts with ubiquinone to oxidize arsenite, in line with thermodynamic considerations. The distribution of the quinone biosynthesis pathways, however, clearly indicates that the ubiquinone pathway is recent. An updated phylogeny of Arx furthermore reinforces the hypothesis of a recent emergence of this enzyme. We therefore conclude that anaerobic arsenite redox conversion in the Archaean must have been performed in a metabolism involving Aio.


Assuntos
Arseniato Redutases/metabolismo , Arsenitos/metabolismo , Evolução Molecular , Oxirredutases/metabolismo , Filogenia , Arseniato Redutases/genética , Genômica , Oxirredução , Oxirredutases/genética , Termodinâmica
6.
Microbiol Resour Announc ; 8(42)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624164

RESUMO

Here, we report the complete genome sequence of an African swine fever (ASF) virus (ASFV/Kyiv/2016/131) isolated from the spleen of a domestic pig in Ukraine with a lethal case of African swine fever. Using only long-read Nanopore sequences, we assembled a full-length genome of 191,911 base pairs in a single contig.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30637402

RESUMO

In this report, we describe the complete genome assembly of a Pantoea agglomerans isolate, TH81, collected from a boreal forest soil associated with permafrost thaw. Using both Nanopore and Illumina sequences, we assembled four circular contigs totaling 4,983,504 bp (N 50, 4,127,869 bp), a complete chromosome with three plasmids.

8.
Environ Microbiol ; 19(2): 475-484, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27207498

RESUMO

Fungi are important parasites of primary producers and nutrient cyclers in aquatic ecosystems. In the Pacific-Arctic domain, fungal parasitism is linked to light intensities and algal stress that can elevate disease incidence on algae and reduce diatom concentrations. Fungi are vastly understudied in the marine realm and knowledge of their function is constrained by the current understanding of fungal distribution and drivers on global scales. To investigate the spatial distribution of fungi in the western Arctic and sub-Arctic, we used high throughput methods to sequence 18S rRNA, cloned and sequenced 28S rRNA and microscopically counted chytrid-infected diatoms. We identified a broad distribution of fungal taxa predominated by Chytridiomycota and Dikarya. Phylogenetic analysis of our Chytridiomycota clones placed Arctic marine fungi sister to the order Lobulomycetales. This clade of fungi predominated in fungal communities under ice with low snowpack. Microscopic examination of fixed seawater and sea ice samples revealed chytrids parasitizing diatoms collected across the Arctic that notably infected 25% of a single diatom species in the Bering Sea. The Pezizomycotina comprised > 95% of eukaryotic sequence reads in Greenland, providing preliminary evidence for osmotrophs being a substitute for algae as the base of food webs.


Assuntos
Diatomáceas/microbiologia , Fungos/isolamento & purificação , Água do Mar/microbiologia , Regiões Árticas , Quitridiomicetos/genética , Quitridiomicetos/isolamento & purificação , Cadeia Alimentar , Fungos/classificação , Fungos/genética , Groenlândia , Sequenciamento de Nucleotídeos em Larga Escala , Camada de Gelo , Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA
9.
mSystems ; 1(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822549

RESUMO

The ubiquitous ATP synthase uses an electrochemical gradient to synthesize cellular energy in the form of ATP. The production of this electrochemical gradient relies on liposoluble proton carriers like ubiquinone (UQ), which is used in the respiratory chains of eukaryotes and proteobacteria. The biosynthesis of UQ requires three hydroxylation reactions on contiguous positions of an aromatic ring. In Escherichia coli, each of three UQ flavin monooxygenases (FMOs), called UbiF, UbiH, and UbiI, modifies a single position of the aromatic ring. This pattern of three hydroxylation reactions/three proteins has been accepted as a paradigm in UQ biology. Using a phylogenetic analysis, we found that UbiF, UbiH, and UbiI are detected only in a small fraction of proteobacteria, and we identified two new types of UQ FMOs: UbiM, which is distributed in members of the alpha, beta, and gamma classes of proteobacteria, and UbiL, which is restricted to members of the alphaproteobacteria. Remarkably, the ubiL and ubiM genes were found in genomes with fewer than three UQ hydroxylase-encoding genes. We demonstrated, using biochemical approaches, that UbiL from Rhodospirillum rubrum and UbiM from Neisseria meningitidis hydroxylate, respectively, two and three positions of the aromatic ring during UQ biosynthesis. We conclude that bacteria have evolved a large repertoire of hydroxylase combinations for UQ biosynthesis, including pathways with either three specialist enzymes or pathways with one or two generalist enzymes of broader regioselectivity. The emergence of the latter is potentially related to genome reduction events. IMPORTANCE UQ, a key molecule for cellular bioenergetics that is conserved from proteobacteria to humans, appeared in an ancestral proteobacterium more than 2 billion years ago. UQ biosynthesis has been studied only in a few model organisms, and thus, the diversity of UQ biosynthesis pathways is largely unknown. In the work reported here, we conducted a phylogenomic analysis of hydroxylases involved in UQ biosynthesis. Our results support the existence of at least two UQ hydroxylases in the proteobacterial ancestor, and yet, we show that their number varies from one to four in extant proteobacterial species. Our biochemical experiments demonstrated that bacteria containing only one or two UQ hydroxylases have developed generalist enzymes that are able to catalyze several steps of UQ biosynthesis. Our study documents a rare case where evolution favored the broadening of an enzyme's regioselectivity, which resulted in gene loss in several proteobacterial species with small genomes.

10.
Plasmid ; 84-85: 27-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26876941

RESUMO

Gene deletion and protein expression are cornerstone procedures for studying metabolism in any organism, including methane-producing archaea (methanogens). Methanogens produce coenzymes and cofactors not found in most bacteria, therefore it is sometimes necessary to express and purify methanogen proteins from the natural host. Protein expression in the native organism is also useful when studying post-translational modifications and their effect on gene expression or enzyme activity. We have created several new suicide plasmids to complement existing genetic tools for use in the methanogen, Methanosarcina acetivorans. The new plasmids are derived from the commercially available Escherichia coli plasmid, pNEB193, and cannot replicate autonomously in methanogens. The designed plasmids facilitate markerless gene deletion, gene transcription, protein expression, and purification of proteins with cleavable affinity tags from the methanogen, M. acetivorans.


Assuntos
Clonagem Molecular/métodos , Deleção de Genes , Genes Transgênicos Suicidas/genética , Methanosarcina/genética , Methanosarcina/metabolismo , Plasmídeos/genética , Expressão Gênica , Metano/biossíntese
11.
J R Soc Interface ; 11(98): 20140196, 2014 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-24968694

RESUMO

Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes.


Assuntos
Oxirredutases/química , Oxigênio/química , Archaea , Atmosfera , Bactérias , Proteínas de Bactérias/química , Evolução Biológica , Análise por Conglomerados , Meio Ambiente , Evolução Molecular , Modelos Moleculares , Oxirredução , Filogenia , Conformação Proteica , Estrutura Terciária de Proteína
12.
Biochim Biophys Acta ; 1837(7): 982-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24361840

RESUMO

Living entities are unimaginable without means to harvest free energy from the environment, that is, without bioenergetics. The quest to understand the bioenergetic ways of early life therefore is one of the crucial elements to understand the emergence of life on our planet. Over the last few years, several mutually exclusive scenarios for primordial bioenergetics have been put forward, all of which are based on some sort of empirical observation, a remarkable step forward from the previous, essentially untestable, ab initio models. We here try to present and compare these scenarios while at the same time discuss their respective empirical weaknesses. The goal of this article is to harness crucial new expertise from the entire field by stimulating a larger part of the bioenergetics community to become involved in "origin-of-energy-metabolism" research. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.


Assuntos
Metabolismo Energético , Evolução Molecular , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Biochim Biophys Acta ; 1827(2): 79-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22982447

RESUMO

Living cells are able to harvest energy by coupling exergonic electron transfer between reducing and oxidising substrates to the generation of chemiosmotic potential. Whereas a wide variety of redox substrates is exploited by prokaryotes resulting in very diverse layouts of electron transfer chains, the ensemble of molecular architectures of enzymes and redox cofactors employed to construct these systems is stunningly small and uniform. An overview of prominent types of electron transfer chains and of their characteristic electrochemical parameters is presented. We propose that basic thermodynamic considerations are able to rationalise the global molecular make-up and functioning of these chemiosmotic systems. Arguments from palaeogeochemistry and molecular phylogeny are employed to discuss the evolutionary history leading from putative energy metabolisms in early life to the chemiosmotic diversity of extant organisms. Following the Occam's razor principle, we only considered for this purpose origin of life scenarios which are contiguous with extant life. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.


Assuntos
Metabolismo Energético , Trifosfato de Adenosina/biossíntese , Transporte de Elétrons , Termodinâmica
14.
Plant J ; 71(2): 205-15, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22372525

RESUMO

It is not known how plants cleave the thioester bond of 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA), a necessary step to form the naphthoquinone ring of phylloquinone (vitamin K(1) ). In fact, only recently has the hydrolysis of DHNA-CoA been demonstrated to be enzyme driven in vivo, and the cognate thioesterase characterized in the cyanobacterium Synechocystis. With a few exceptions in certain prokaryotic (Sorangium and Opitutus) and eukaryotic (Cyanidium, Cyanidioschyzon and Paulinella) organisms, orthologs of DHNA-CoA thioesterase are missing outside of the cyanobacterial lineage. In this study, genomic approaches and functional complementation experiments identified two Arabidopsis genes encoding functional DHNA-CoA thioesterases. The deduced plant proteins display low percentages of identity with cyanobacterial DHNA-CoA thioesterases, and do not even share the same catalytic motif. GFP-fusion experiments demonstrated that the Arabidopsis proteins are targeted to peroxisomes, and subcellular fractionations of Arabidopsis leaves confirmed that DHNA-CoA thioesterase activity occurs in this organelle. In vitro assays with various aromatic and aliphatic acyl-CoA thioester substrates showed that the recombinant Arabidopsis enzymes preferentially hydrolyze DHNA-CoA. Cognate T-DNA knock-down lines display reduced DHNA-CoA thioesterase activity and phylloquinone content, establishing in vivo evidence that the Arabidopsis enzymes are involved in phylloquinone biosynthesis. Extraordinarily, structure-based phylogenies coupled to comparative genomics demonstrate that plant DHNA-CoA thioesterases originate from a horizontal gene transfer with a bacterial species of the Lactobacillales order.


Assuntos
Acil Coenzima A/metabolismo , Arabidopsis/enzimologia , Lactobacillales/enzimologia , Peroxissomos/enzimologia , Tioléster Hidrolases/genética , Vitamina K 1/análogos & derivados , Vitamina K 1/metabolismo , Vitaminas/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Técnicas de Inativação de Genes , Transferência Genética Horizontal , Teste de Complementação Genética , Genômica , Genótipo , Hidrólise , Lactobacillales/genética , Mutagênese Insercional , Peroxissomos/metabolismo , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas Recombinantes de Fusão , Especificidade por Substrato , Synechocystis/enzimologia , Synechocystis/genética , Tioléster Hidrolases/isolamento & purificação , Tioléster Hidrolases/metabolismo , Vitamina K 1/química , Vitaminas/química
15.
Plant J ; 69(2): 366-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21950843

RESUMO

Ubiquinone (coenzyme Q) is the generic name of a class of lipid-soluble electron carriers formed of a redox active benzoquinone ring attached to a prenyl side chain. The length of the latter varies among species, and depends upon the product specificity of a trans-long-chain prenyl diphosphate synthase that elongates an allylic diphosphate precursor. In Arabidopsis, this enzyme is assumed to correspond to an endoplasmic reticulum-located solanesyl diphosphate synthase, although direct genetic evidence was lacking. In this study, the reconstruction of the functional network of Arabidopsis genes linked to ubiquinone biosynthesis singled out an unsuspected solanesyl diphosphate synthase candidate--product of gene At2g34630--that, extraordinarily, had been shown previously to be targeted to plastids and to contribute to the biosynthesis of gibberellins. Green fluorescent protein (GFP) fusion experiments in tobacco and Arabidopsis, and complementation of a yeast coq1 knockout lacking mitochondrial hexaprenyl diphosphate synthase demonstrated that At2g34630 is also targeted to mitochondria. At2g34630 is the main--if not sole--contributor to solanesyl diphosphate synthase activity required for the biosynthesis of ubiquinone, as demonstrated by the dramatic (75-80%) reduction of the ubiquinone pool size in corresponding RNAi lines. Overexpression of At2g34630 gave up to a 40% increase in ubiquinone content compared to wild-type plants. None of the silenced or overexpressing lines, in contrast, displayed altered levels of plastoquinone. Phylogenetic analyses revealed that At2g34630 is the only Arabidopsis trans-long-chain prenyl diphosphate synthase that clusters with the Coq1 orthologs involved in the biosynthesis of ubiquinone in other eukaryotes.


Assuntos
Alquil e Aril Transferases/metabolismo , Arabidopsis/enzimologia , Redes Reguladoras de Genes/genética , Ubiquinona/metabolismo , Alquil e Aril Transferases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Cloroplastos/enzimologia , Clonagem Molecular , Técnicas de Inativação de Genes , Teste de Complementação Genética , Proteínas de Fluorescência Verde , Mitocôndrias/enzimologia , Mutação , Filogenia , Plantas Geneticamente Modificadas , Plastoquinona/metabolismo , Interferência de RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terpenos/química , Terpenos/metabolismo , Ubiquinona/química
16.
Trends Biochem Sci ; 34(1): 9-15, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19008107

RESUMO

Evolutionary histories of enzymes involved in chemiosmotic energy conversion indicate that a strongly oxidizing substrate was available to the last universal common ancestor before the divergence of Bacteria and Archaea. According to palaeogeochemical evidence, O(2) was not present beyond trace amounts on the early Earth. Based on recent phylogenetic, enzymatic and geochemical results, we propose that, in the earliest Archaean, nitric oxide (NO) and its derivatives nitrate and nitrite served as strongly oxidizing substrates driving the evolution of a bioenergetic pathway related to modern dissimilatory denitrification. Aerobic respiration emerged later from within this ancestral pathway via adaptation of the enzyme NO reductase to its new substrate, dioxygen.


Assuntos
Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Archaea/metabolismo , Evolução Biológica , Citocromos b/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Elétrons , Evolução Molecular , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Oxigênio/metabolismo , Filogenia , Especificidade por Substrato , Tirosina/química
17.
BMC Evol Biol ; 8: 206, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-18631373

RESUMO

BACKGROUND: Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr), another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase. The evolutionary history of the Arr-enzyme has not been studied in detail so far. RESULTS: We performed a genomic search of genes related to arrA coding for the molybdopterin subunit. The multiple alignment of the retrieved sequences served to reconstruct a neighbor-joining phylogeny of Arr and closely related enzymes. Our analysis confirmed the previously proposed proximity of Arr to the cluster of polysulfide/thiosulfate reductases but also unravels a hitherto unrecognized clade even more closely related to Arr. The obtained phylogeny strongly suggests that Arr originated after the Bacteria/Archaea divergence in the domain Bacteria, and was subsequently laterally distributed within this domain. It further more indicates that, as a result of accumulation of arsenate in the environment, an enzyme related to polysulfide reductase and not to arsenite oxidase has evolved into Arr. CONCLUSION: These findings are paleogeochemically rationalized by the fact that the accumulation of arsenate over arsenite required the increase in oxidation state of the environment brought about by oxygenic photosynthesis.


Assuntos
Arseniato Redutases/genética , Coenzimas/genética , Meio Ambiente , Evolução Molecular , Metaloproteínas/genética , Filogenia , Sequência de Aminoácidos , Genoma Bacteriano , Proteínas Ferro-Enxofre/genética , Dados de Sequência Molecular , Cofatores de Molibdênio , Família Multigênica , Fases de Leitura Aberta , Oxirredução , Oxirredutases/genética , Pteridinas , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Análise de Sequência de Proteína , Shewanella/enzimologia , Shewanella/genética , Wolinella/enzimologia , Wolinella/genética
18.
Mol Biol Evol ; 25(6): 1158-66, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18353797

RESUMO

A survey of genomes for the presence of gene clusters related to cbb(3) oxidases detected bona fide members of the family in almost all phyla of the domain Bacteria. No archaeal representatives were found. The subunit composition was seen to vary substantially between clades observed on the phylogenetic tree of the catalytic subunit CcoN. The protein diade formed by CcoN and the monoheme cytochrome CcoO appears to constitute the functionally essential "core" of the enzyme conserved in all sampled cbb(3) gene clusters. The topology of the phylogenetic tree contradicts the scenario of a recent origin of cbb(3) oxidases and substantiates the status of this family as a phylogenetic entity on the same level as the other subgroups of the heme-copper superfamily (including nitric oxide reductase). This finding resuscitates and exacerbates the conundrum of the evolutionary origin of heme-copper oxidases.


Assuntos
Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Domínio Catalítico/genética , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Evolução Molecular , Hemeproteínas/classificação , Hemeproteínas/genética , Genoma Bacteriano , Proteínas Ligantes de Grupo Heme , Família Multigênica , Filogenia , Subunidades Proteicas/classificação , Subunidades Proteicas/genética , Análise de Sequência de DNA
19.
Mol Biol Evol ; 23(6): 1180-91, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16569761

RESUMO

Previously published phylogenetic trees reconstructed on "Rieske protein" sequences frequently are at odds with each other, with those of other subunits of the parent enzymes and with small-subunit rRNA trees. These differences are shown to be at least partially if not completely due to problems in the reconstruction procedures. A major source of erroneous Rieske protein trees lies in the presence of a large, poorly conserved domain prone to accommodate very long insertions in well-defined structural hot spots substantially hampering multiple alignments. The remaining smaller domain, in contrast, is too conserved to allow distant phylogenies to be deduced with sufficient confidence. Three-dimensional structures of representatives from this protein family are now available from phylogenetically distant species and from diverse enzymes. Multiple alignments can thus be refined on the basis of these structures. We show that structurally guided alignments of Rieske proteins from Rieske-cytochrome b complexes and arsenite oxidases strongly reduce conflicts between resulting trees and those obtained on their companion enzyme subunits. Further problems encountered during this work, mainly consisting in database errors such as wrong annotations and frameshifts, are described. The obtained results are discussed against the background of hypotheses stipulating pervasive lateral gene transfer in prokaryotes.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Filogenia , Alinhamento de Sequência , Algoritmos , Sequência de Aminoácidos , Bactérias/química , Citocromos b/genética , Elementos de DNA Transponíveis , Deleção de Genes , Transferência Genética Horizontal , Genes de RNAr , Oxirredutases/genética , Estrutura Secundária de Proteína , Sulfolobus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...