Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(29)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34272247

RESUMO

Nondestructive and noninvasive investigation techniques are highly sought-after to establish the degradation state of historical parchments, which is up to now assessed by thermal techniques that are invasive and destructive. We show that advanced nonlinear optical (NLO) microscopy enables quantitative in situ mapping of parchment degradation at the micrometer scale. We introduce two parameters that are sensitive to different degradation stages: the ratio of two-photon excited fluorescence to second harmonic generation (SHG) signals probes severe degradation, while the anisotropy parameter extracted from polarization-resolved SHG measurements is sensitive to early degradation. This approach is first validated by comparing NLO quantitative parameters to thermal measurements on artificially altered contemporary parchments. We then analyze invaluable parchments from the Middle Ages and show that we can map their conservation state and assess the impact of a restoration process. NLO quantitative microscopy should therefore help to identify parchments most at risk and optimize restoration methods.

2.
ACS Biomater Sci Eng ; 7(2): 626-635, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400500

RESUMO

The elaboration of scaffolds able to efficiently promote cell differentiation toward a given cell type remains challenging. Here, we engineered dense type I collagen threads with the aim of providing scaffolds with specific morphological and mechanical properties for C3H10T1/2 mesenchymal stem cells. Extrusion of pure collagen solutions at different concentrations (15, 30, and 60 mg/mL) in a PBS 5× buffer generated dense fibrillated collagen threads. For the two highest concentrations, threads displayed a core-shell structure with a marked fibril orientation of the outer layer along the longitudinal axis of the threads. Young's modulus and ultimate tensile stress as high as 1 and 0.3 MPa, respectively, were obtained for the most concentrated collagen threads without addition of any cross-linkers. C3H10T1/2 cells oriented themselves with a mean angle of 15-24° with respect to the longitudinal axis of the threads. Cells penetrated the 30 mg/mL scaffolds but remained on the surface of the 60 mg/mL ones. After three weeks of culture, cells displayed strong expression of the tendon differentiation marker Tnmd, especially for the 30 mg/mL threads. These results suggest that both the morphological and mechanical characteristics of collagen threads are key factors in promoting C3H10T1/2 differentiation into tenocytes, offering promising levers to optimize tissue engineering scaffolds for tendon regeneration.


Assuntos
Colágeno , Células-Tronco Mesenquimais , Diferenciação Celular , Engenharia Tecidual , Alicerces Teciduais
3.
J Vis Exp ; (153)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31814618

RESUMO

A protocol is presented to build a custom low-cost yet high-performance femtosecond (fs) fiber laser. This all-normal-dispersion (ANDi) ytterbium-doped fiber laser is built completely using commercially available parts, including $8,000 in fiber optic and pump laser components, plus $4,800 in standard optical components and extra-cavity accessories. Researchers new to fiber optic device fabrication may also consider investing in basic fiber splicing and laser pulse characterization equipment (~$63,000). Important for optimal laser operation, methods to verify true versus apparent (partial or noise-like) mode-locked performance are presented. This system achieves 70 fs pulse duration with a center wavelength of approximately 1,070 nm and a pulse repetition rate of 31 MHz. This fiber laser exhibits the peak performance that may be obtained for an easily assembled fiber laser system, which makes this design ideal for research laboratories aiming to develop compact and portable fs laser technologies that enable new implementations of clinical multiphoton microscopy and fs surgery.


Assuntos
Lasers , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Desenho de Equipamento , Tecnologia de Fibra Óptica , Microscopia de Fluorescência por Excitação Multifotônica/economia , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Fótons , Itérbio
4.
Sci Rep ; 9(1): 4233, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862800

RESUMO

Solid-state femtosecond lasers have stimulated the broad adoption of multiphoton microscopy in the modern laboratory. However, these devices remain costly. Fiber lasers offer promise as a means to inexpensively produce ultrashort pulses of light suitable for nonlinear microscopy in compact, robust and portable devices. Although encouraging, the initial methods reported in the biomedical engineering community to construct home-built femtosecond fiber laser systems overlooked fundamental aspects that compromised performance and misrepresented the significant financial and intellectual investments required to build these devices. Here, we present a practical protocol to fabricate an all-normal-dispersion ytterbium (Yb)-doped femtosecond fiber laser oscillator using commercially-available parts (plus standard optical components and extra-cavity accessories) as well as basic fiber splicing and laser pulse characterization equipment. We also provide a synthesis of established protocols in the laser physics community, but often overlooked in other fields, to verify true versus seemingly (partial or noise-like) mode-locked performance. The approaches described here make custom fabrication of femtosecond fiber lasers more accessible to a wide range of investigators and better represent the investments required for the proper laser design, fabrication and operation.


Assuntos
Tecnologia de Fibra Óptica , Lasers de Estado Sólido , Microscopia de Fluorescência por Excitação Multifotônica , Itérbio
5.
J Biophotonics ; 12(5): e201800336, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30604478

RESUMO

The mechanical properties of biological tissues are strongly correlated to the specific distribution of their collagen fibers. Monitoring the dynamic reorganization of the collagen network during mechanical stretching is however a technical challenge, because it requires mapping orientation of collagen fibers in a thick and deforming sample. In this work, a fast polarization-resolved second harmonic generation microscope is implemented to map collagen orientation during mechanical assays. This system is based on line-to-line switching of polarization using an electro-optical modulator and works in epi-detection geometry. After proper calibration, it successfully highlights the collagen dynamic alignment along the traction direction in ex vivo murine skin dermis. This microstructure reorganization is quantified by the entropy of the collagen orientation distribution as a function of the stretch ratio. It exhibits a linear behavior, whose slope is measured with a good accuracy. This approach can be generalized to probe a variety of dynamic processes in thick tissues.


Assuntos
Colágeno/metabolismo , Fenômenos Mecânicos , Microscopia , Pele/diagnóstico por imagem , Pele/metabolismo , Animais , Fenômenos Biomecânicos , Processamento de Imagem Assistida por Computador , Camundongos , Fatores de Tempo
6.
J Biophotonics ; 12(5): e201800276, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30548419

RESUMO

A two-photon fluorescence lifetime (2P-FLIM) microendoscope, capable of energetic metabolism imaging through the intracellular nicotinamide adenine dinucleotide (NADH) autofluorescence, at sub-cellular resolution, is demonstrated. It exhibits readily usable characteristics such as convenient endoscope probe diameter (≈2 mm), fiber length (>5 m) and data accumulation rate (16 frames per second (fps)), leading to a FLIM refreshing rate of ≈0.1 to 1 fps depending on the sample. The spiral scanning image formation does not influence the instrument response function (IRF) characteristics of the system. Near table-top microscope performances are achieved through a comprehensive system including a home-designed spectro-temporal pulse shaper and a custom air-silica double-clad photonic crystal fiber, which enables to reach up to 40 mW of ≈100 fs pulses @ 760 nm with a 80 MHz repetition rate. A GRadient INdex (GRIN) lens provides a lateral resolution of 0.67 µm at the focus of the fiber probe. Intracellular NADH fluorescence lifetime data are finally acquired on cultured cells at 16 fps.


Assuntos
Endoscópios , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Animais , Desenho de Equipamento , Células HT29 , Humanos , NAD/metabolismo , Ratos , Cauda , Tendões/diagnóstico por imagem
7.
Sci Rep ; 7(1): 13750, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061975

RESUMO

Skin aging is a complex process that strongly affects the mechanical behavior of skin. This study aims at deciphering the relationship between age-related changes in dermis mechanical behavior and the underlying changes in dermis microstructure. To that end, we use multiphoton microscopy to monitor the reorganization of dermal collagen during mechanical traction assays in ex vivo skin from young and old mice. The simultaneous variations of a full set of mechanical and microstructural parameters are analyzed in the framework of a multiscale mechanical interpretation. They show consistent results for wild-type mice as well as for genetically-modified mice with modified collagen V synthesis. We mainly observe an increase of the tangent modulus and a lengthening of the heel region in old murine skin from all strains, which is attributed to two different origins that may act together: (i) increased cross-linking of collagen fibers and (ii) loss of water due to proteoglycans deterioration, which impedes inner sliding within these fibers. In contrast, the microstructure reorganization upon stretching shows no age-related difference, which can be attributed to opposite effects of the decrease of collagen content and of the increase of collagen cross-linking in old mice.


Assuntos
Envelhecimento , Colágeno/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Envelhecimento da Pele , Pele/fisiopatologia , Animais , Fenômenos Biomecânicos , Humanos , Camundongos , Camundongos Transgênicos , Pele/anatomia & histologia , Estresse Mecânico
8.
Sci Rep ; 5: 18303, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26673905

RESUMO

We present a two-photon microendoscope capable of in vivo label-free deep-tissue high-resolution fast imaging through a very long optical fiber. First, an advanced light-pulse spectro-temporal shaping device optimally precompensates for linear and nonlinear distortions occurring during propagation within the endoscopic fiber. This enables the delivery of sub-40-fs duration infrared excitation pulses at the output of 5 meters of fiber. Second, the endoscopic fiber is a custom-made double-clad polarization-maintaining photonic crystal fiber specifically designed to optimize the imaging resolution and the intrinsic luminescence backward collection. Third, a miniaturized fiber-scanner of 2.2 mm outer diameter allows simultaneous second harmonic generation (SHG) and two-photon excited autofluorescence (TPEF) imaging at 8 frames per second. This microendoscope's transverse and axial resolutions amount respectively to 0.8 µm and 12 µm, with a field-of-view as large as 450 µm. This microendoscope's unprecedented capabilities are validated during label-free imaging, ex vivo on various fixed human tissue samples, and in vivo on an anesthetized mouse kidney demonstrating an imaging penetration depth greater than 300 µm below the surface of the organ. The results reported in this manuscript confirm that nonlinear microendoscopy can become a valuable clinical tool for real-time in situ assessment of pathological states.


Assuntos
Diagnóstico por Imagem/métodos , Endoscopia/métodos , Nefropatias/patologia , Rim/anatomia & histologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Diagnóstico por Imagem/instrumentação , Endoscopia/instrumentação , Fibrose/patologia , Humanos , Pulmão/anatomia & histologia , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Dinâmica não Linear , Fibras Ópticas , Reprodutibilidade dos Testes , Fatores de Tempo
9.
Sci Rep ; 5: 17635, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26631592

RESUMO

Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.


Assuntos
Síndrome de Ehlers-Danlos/fisiopatologia , Microscopia/métodos , Pele/fisiopatologia , Animais , Fenômenos Biomecânicos , Colágeno/ultraestrutura , Colágeno Tipo V/genética , Derme/fisiopatologia , Derme/ultraestrutura , Modelos Animais de Doenças , Síndrome de Ehlers-Danlos/genética , Processamento de Imagem Assistida por Computador , Camundongos Endogâmicos , Camundongos Transgênicos , Fótons
10.
Biomed Opt Express ; 3(5): 840-53, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22567579

RESUMO

Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...