Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Mol Neurosci ; 15: 1022771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36683846

RESUMO

One monumental discovery in the field of cell biology is the establishment of the membrane guanylate cyclase signal transduction system. Decoding its fundamental, molecular, biochemical, and genetic features revolutionized the processes of developing therapies for diseases of endocrinology, cardio-vasculature, and sensory neurons; lastly, it has started to leave its imprints with the atmospheric carbon dioxide. The membrane guanylate cyclase does so via its multi-limbed structure. The inter-netted limbs throughout the central, sympathetic, and parasympathetic systems perform these functions. They generate their common second messenger, cyclic GMP to affect the physiology. This review describes an historical account of their sequential evolutionary development, their structural components and their mechanisms of interaction. The foundational principles were laid down by the discovery of its first limb, the ACTH modulated signaling pathway (the companion monograph). It challenged two general existing dogmas at the time. First, there was the question of the existence of a membrane guanylate cyclase independent from a soluble form that was heme-regulated. Second, the sole known cyclic AMP three-component-transduction system was modulated by GTP-binding proteins, so there was the question of whether a one-component transduction system could exclusively modulate cyclic GMP in response to the polypeptide hormone, ACTH. The present review moves past the first question and narrates the evolution and complexity of the cyclic GMP signaling pathway. Besides ACTH, there are at least five additional limbs. Each embodies a unique modular design to perform a specific physiological function; exemplified by ATP binding and phosphorylation, Ca2+-sensor proteins that either increase or decrease cyclic GMP synthesis, co-expression of antithetical Ca2+ sensors, GCAP1 and S100B, and modulation by atmospheric carbon dioxide and temperature. The complexity provided by these various manners of operation enables membrane guanylate cyclase to conduct diverse functions, exemplified by the control over cardiovasculature, sensory neurons and, endocrine systems.

3.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30783616

RESUMO

The membrane guanylate cyclase, ROS-GC, that synthesizes cyclic GMP for use as a second messenger for visual transduction in retinal rods and cones, is stimulated by bicarbonate. Bicarbonate acts directly on ROS-GC1, because it enhanced the enzymatic activity of a purified, recombinant fragment of bovine ROS-GC1 consisting solely of the core catalytic domain. Moreover, recombinant ROS-GC1 proved to be a true sensor of bicarbonate, rather than a sensor for CO2. Access to bicarbonate differed in rods and cones of larval salamander, Ambystoma tigrinum, of unknown sex. In rods, bicarbonate entered at the synapse and diffused to the outer segment, where it was removed by Cl--dependent exchange. In contrast, cones generated bicarbonate internally from endogenous CO2 or from exogenous CO2 that was present in extracellular solutions of bicarbonate. Bicarbonate production from both sources of CO2 was blocked by the carbonic anhydrase inhibitor, acetazolamide. Carbonic anhydrase II expression was verified immunohistochemically in cones but not in rods. In addition, cones acquired bicarbonate at their outer segments as well as at their inner segments. The multiple pathways for access in cones may support greater uptake of bicarbonate than in rods and buffer changes in its intracellular concentration.


Assuntos
Bicarbonatos/metabolismo , Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Visão Ocular/fisiologia , Acetazolamida/farmacologia , Ambystoma , Animais , Células COS , Dióxido de Carbono/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Bovinos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , GMP Cíclico/metabolismo , Expressão Gênica , Guanilato Ciclase/genética , Camundongos , Proteínas Recombinantes/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Visão Ocular/efeitos dos fármacos
4.
Front Mol Neurosci ; 11: 430, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546296

RESUMO

Prototype member of the membrane guanylate cyclase family, ANF-RGC (Atrial Natriuretic Factor Receptor Guanylate Cyclase), is the physiological signal transducer of two most hypotensive hormones ANF and BNP, and of the intracellular free Ca2+. Both the hormonal and the Ca2+-modulated signals operate through a common second messenger, cyclic GMP; yet, their operational modes are divergent. The hormonal pathways originate at the extracellular domain of the guanylate cyclase; and through a cascade of structural changes in its successive domains activate the C-terminal catalytic domain (CCD). In contrast, the Ca2+ signal operating via its sensor, myristoylated neurocalcin δ both originates and is translated directly at the CCD. Through a detailed sequential deletion and expression analyses, the present study examines the role of the signaling helix domain (SHD) in these two transduction pathways. SHD is a conserved 35-amino acid helical region of the guanylate cyclase, composed of five heptads, each meant to tune and transmit the hormonal signals to the CCD for their translation and generation of cyclic GMP. Its structure is homo-dimeric and the molecular docking analyses point out to the possibility of antiparallel arrangement of the helices. Contrary to the hormonal signaling, SHD has no role in regulation of the Ca2+- modulated pathway. The findings establish and define in molecular terms the presence of two distinct non-overlapping transduction modes of ANF-RGC, and for the first time demonstrate how differently they operate, and, yet generate cyclic GMP utilizing common CCD machinery.

5.
Methods Mol Biol ; 1753: 129-158, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29564786

RESUMO

Our ability to see is based on the activity of retinal rod and cone photoreceptors. Rods function when there is very little light, while cones operate at higher light levels. Photon absorption by rhodopsin activates a biochemical cascade that converts photic energy into a change in the membrane potential of the cell by decreasing the levels of a second messenger, cGMP, that control the gating of cation channels. But just as important as the activation of the cascade are the shut-off and recovery processes. The timing of shutoff and recovery ultimately affects sensitivity, temporal resolution and even the capacity for counting single photons. An important part of the recovery is restoration of cGMP through the action of rod outer segment membrane guanylate cyclases (ROS-GCs) and guanylate cyclase-activating proteins (GCAPs). In darkness, ROS-GCs catalyze the conversion of GTP to cGMP at a low rate, due to inhibition of cyclase activity by GCAPs. In the light, GCAP enhances ROS-GC activity. Mutations in the ROS-GC system can cause problems in vision, and even result in blindness due to photoreceptor death. The mouse has emerged as a particularly useful subject to study the role of ROS-GC because the technology for the manipulation of their genetics is advanced, making production of mice with targeted mutations much easier. Here we describe some experimental procedures for studying the retinal rods of wild-type and genetically engineered mice: biochemical assays of ROS-GC activity, immunohistochemistry, and single cell recording.


Assuntos
Cálcio/metabolismo , Guanilato Ciclase/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Animais , Cátions Bivalentes/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Eletrodos , Ensaios Enzimáticos/instrumentação , Ensaios Enzimáticos/métodos , Feminino , Guanilato Ciclase/genética , Guanilato Ciclase/isolamento & purificação , Radioisótopos do Iodo/química , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Modelos Animais , Mutagênese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Visão Ocular/fisiologia
6.
Mol Cell Biochem ; 448(1-2): 91-105, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29427171

RESUMO

This study with recombinant reconstituted system mimicking the cellular conditions of the native cones documents that photoreceptor ROS-GC1 is modulated by gaseous CO2. Mechanistically, CO2 is sensed by carbonic anhydrase (CAII), generates bicarbonate that, in turn, directly targets the core catalytic domain of ROS-GC1, and activates it to increased synthesis of cyclic GMP. This, then, functions as a second messenger for the cone phototransduction. The study demonstrates that, in contrast to the Ca2+-modulated phototransduction, the CO2 pathway is Ca2+-independent, yet is linked with it and synergizes it. It, through R787C mutation in the third heptad of the signal helix domain of ROS-GC1, affects cone-rod dystrophy, CORD6. CORD6 is caused firstly by lowered basal and GCAP1-dependent ROS-GC1 activity and secondly, by a shift in Ca2+ sensitivity of the ROS-GC1/GCAP1 complex that remains active in darkness. Remarkably, the first but not the second defect disappears with bicarbonate thus explaining the basis for CORD6 pathological severity. Because cones, but not rods, express CAII, the excessive synthesis of cyclic GMP would be most acute in cones.


Assuntos
Dióxido de Carbono/metabolismo , Anidrase Carbônica II/metabolismo , Distrofias de Cones e Bastonetes/enzimologia , Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/metabolismo , Células Fotorreceptoras Retinianas Cones/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Animais , Células COS , Anidrase Carbônica II/genética , Catálise , Bovinos , Chlorocebus aethiops , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/patologia , GMP Cíclico/genética , GMP Cíclico/metabolismo , Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/genética , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia
7.
Front Mol Neurosci ; 10: 173, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638321

RESUMO

Membrane guanylate cyclase (MGC) is a ubiquitous multi-switching cyclic GMP generating signaling machine linked with countless physiological processes. In mammals it is encoded by seven distinct homologous genes. It is a single transmembrane spanning multi-modular protein; composed of integrated blocks and existing in homo-dimeric form. Its core catalytic domain (CCD) module is a common transduction center where all incoming signals are translated into the production of cyclic GMP, a cellular signal second messenger. Crystal structure of the MGC's CCD does not exist and its precise identity is ill-defined. Here, we define it at a sub-molecular level for the phototransduction-linked MGC, the rod outer segment guanylate cyclase type 1, ROS-GC1. (1) The CCD is a conserved 145-residue structural unit, represented by the segment V820-P964. (2) It exists as a homo-dimer and contains seven conserved catalytic elements (CEs) wedged into seven conserved motifs. (3) It also contains a conserved 21-residue neurocalcin δ-modulated structural domain, V836-L857. (4) Site-directed mutagenesis documents that each of the seven CEs governs the cyclase's catalytic activity. (5) In contrast to the soluble and the bacterium MGC which use Mn2+-GTP substrate for catalysis, MGC CCD uses the natural Mg2+-GTP substrate. (6) Strikingly, the MGC CCD requires anchoring by the Transmembrane Domain (TMD) to exhibit its major (∼92%) catalytic activity; in isolated form the activity is only marginal. This feature is not linked with any unique sequence of the TMD; there is minimal conservation in TMD. Finally, (7) the seven CEs control each of four phototransduction pathways- -two Ca2+-sensor GCAPs-, one Ca2+-sensor, S100B-, and one bicarbonate-modulated. The findings disclose that the CCD of ROS-GC1 has built-in regulatory elements that control its signal translational activity. Due to conservation of these regulatory elements, it is proposed that these elements also control the physiological activity of other members of MGC family.

8.
Front Mol Neurosci ; 9: 83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695398

RESUMO

This monograph presents a historical perspective of cornerstone developments on the biochemistry and physiology of mammalian membrane guanylate cyclases (MGCs), highlighting contributions made by the authors and their collaborators. Upon resolution of early contentious studies, cyclic GMP emerged alongside cyclic AMP, as an important intracellular second messenger for hormonal signaling. However, the two signaling pathways differ in significant ways. In the cyclic AMP pathway, hormone binding to a G protein coupled receptor leads to stimulation or inhibition of an adenylate cyclase, whereas the cyclic GMP pathway dispenses with intermediaries; hormone binds to an MGC to affect its activity. Although the cyclic GMP pathway is direct, it is by no means simple. The modular design of the molecule incorporates regulation by ATP binding and phosphorylation. MGCs can form complexes with Ca2+-sensing subunits that either increase or decrease cyclic GMP synthesis, depending on subunit identity. In some systems, co-expression of two Ca2+ sensors, GCAP1 and S100B with ROS-GC1 confers bimodal signaling marked by increases in cyclic GMP synthesis when intracellular Ca2+ concentration rises or falls. Some MGCs monitor or are modulated by carbon dioxide via its conversion to bicarbonate. One MGC even functions as a thermosensor as well as a chemosensor; activity reaches a maximum with a mild drop in temperature. The complexity afforded by these multiple limbs of operation enables MGC networks to perform transductions traditionally reserved for G protein coupled receptors and Transient Receptor Potential (TRP) ion channels and to serve a diverse array of functions, including control over cardiac vasculature, smooth muscle relaxation, blood pressure regulation, cellular growth, sensory transductions, neural plasticity and memory.

9.
Front Mol Neurosci ; 9: 5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858600

RESUMO

Photoreceptor ROS-GC1, a prototype subfamily member of the membrane guanylate cyclase family, is a central component of phototransduction. It is a single transmembrane-spanning protein, composed of modular blocks. In rods, guanylate cyclase activating proteins (GCAPs) 1 and 2 bind to its juxtamembrane domain (JMD) and the C-terminal extension, respectively, to accelerate cyclic GMP synthesis when Ca(2+) levels are low. In cones, the additional expression of the Ca(2+)-dependent guanylate cyclase activating protein (CD-GCAP) S100B which binds to its C-terminal extension, supports acceleration of cyclic GMP synthesis at high Ca(2+) levels. Independent of Ca(2+), ROS-GC1 activity is also stimulated directly by bicarbonate binding to the core catalytic domain (CCD). Several enticing molecular features of this transduction system are revealed in the present study. In combination, bicarbonate and Ca(2+)-dependent modulators raised maximal ROS-GC activity to levels that exceeded the sum of their individual effects. The F(514)S mutation in ROS-GC1 that causes blindness in type 1 Leber's congenital amaurosis (LCA) severely reduced basal ROS-GC1 activity. GCAP2 and S100B Ca(2+) signaling modes remained functional, while the GCAP1-modulated mode was diminished. Bicarbonate nearly restored basal activity as well as GCAP2- and S100B-stimulated activities of the F(514)S mutant to normal levels but could not resurrect GCAP1 stimulation. We conclude that GCAP1 and GCAP2 forge distinct pathways through domain-specific modules of ROS-GC1 whereas the S100B and GCAP2 pathways may overlap. The synergistic interlinking of bicarbonate to GCAPs- and S100B-modulated pathways intensifies and tunes the dependence of cyclic GMP synthesis on intracellular Ca(2+). Our study challenges the recently proposed GCAP1 and GCAP2 "overlapping" phototransduction model (Peshenko et al., 2015b).

11.
J Biol Chem ; 290(17): 11052-60, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25767116

RESUMO

By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca(2+)]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mM for ROS-GC1 and 39 mM for ROS-GC2. The effect required neither Ca(2+) nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca(2+)]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity.


Assuntos
Bicarbonatos/toxicidade , Sinalização do Cálcio/efeitos dos fármacos , Guanilato Ciclase/metabolismo , Animais , Células COS , Catálise , Bovinos , Chlorocebus aethiops , GMP Cíclico/genética , GMP Cíclico/metabolismo , Guanilato Ciclase/genética , Estrutura Terciária de Proteína
12.
Front Mol Neurosci ; 7: 56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071437

RESUMO

A sequel to these authors' earlier comprehensive reviews which covered the field of mammalian membrane guanylate cyclase (MGC) from its origin to the year 2010, this article contains 13 sections. The first is historical and covers MGC from the year 1963-1987, summarizing its colorful developmental stages from its passionate pursuit to its consolidation. The second deals with the establishment of its biochemical identity. MGC becomes the transducer of a hormonal signal and founder of the peptide hormone receptor family, and creates the notion that hormone signal transduction is its sole physiological function. The third defines its expansion. The discovery of ROS-GC subfamily is made and it links ROS-GC with the physiology of phototransduction. Sections ROS-GC, a Ca(2+)-Modulated Two Component Transduction System to Migration Patterns and Translations of the GCAP Signals Into Production of Cyclic GMP are Different cover its biochemistry and physiology. The noteworthy events are that augmented by GCAPs, ROS-GC proves to be a transducer of the free Ca(2+) signals generated within neurons; ROS-GC becomes a two-component transduction system and establishes itself as a source of cyclic GMP, the second messenger of phototransduction. Section ROS-GC1 Gene Linked Retinal Dystrophies demonstrates how this knowledge begins to be translated into the diagnosis and providing the molecular definition of retinal dystrophies. Section Controlled By Low and High Levels of [Ca(2+)]i, ROS-GC1 is a Bimodal Transduction Switch discusses a striking property of ROS-GC where it becomes a "[Ca(2+)]i bimodal switch" and transcends its signaling role in other neural processes. In this course, discovery of the first CD-GCAP (Ca(2+)-dependent guanylate cyclase activator), the S100B protein, is made. It extends the role of the ROS-GC transduction system beyond the phototransduction to the signaling processes in the synapse region between photoreceptor and cone ON-bipolar cells; in section Ca(2+)-Modulated Neurocalcin δ ROS-GC1 Transduction System Exists in the Inner Plexiform Layer (IPL) of the Retinal Neurons, discovery of another CD-GCAP, NCδ, is made and its linkage with signaling of the inner plexiform layer neurons is established. Section ROS-GC Linkage With Other Than Vision-Linked Neurons discusses linkage of the ROS-GC transduction system with other sensory transduction processes: Pineal gland, Olfaction and Gustation. In the next, section Evolution of a General Ca(2+)-Interlocked ROS-GC Signal Transduction Concept in Sensory and Sensory-Linked Neurons, a theoretical concept is proposed where "Ca(2+)-interlocked ROS-GC signal transduction" machinery becomes a common signaling component of the sensory and sensory-linked neurons. Closure to the review is brought by the conclusion and future directions.

13.
Front Mol Neurosci ; 7: 34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24808824

RESUMO

ROS-GC1 belongs to the Ca(2+)-modulated sub-family of membrane guanylate cyclases. It primarily exists and is linked with signaling of the sensory neurons - sight, smell, taste, and pinealocytes. Exceptionally, it is also present and is Ca(2+)-modulated in t he non-neuronal cells, the sperm cells in the testes, where S100B protein serves as its Ca(2+) sensor. The present report demonstrates the identification of an additional Ca(2+) sensor of ROS-GC1 in the testes, neurocalcin δ. Through mouse molecular genetic models, it compares and quantifies the relative input of the S100B and neurocalcin δ in regulating the Ca(2+) signaling of ROS-GC1 transduction machinery, and via immunochemistry it demonstrates the co-presence of neurocalcin δ and ROS-GC1 in the spermatogenic cells of the testes. The suggestion is that in more ways than one the Ca(2+)-modulated ROS-GC1 transduction system is linked with the testicular function. This non-neuronal transduction system may represent an illustration of the ROS-GC1 expanding role in the trans-signaling of the neural and non-neural systems.

14.
Front Mol Neurosci ; 7: 21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24723847

RESUMO

Photoreceptor rod outer segment membrane guanylate cyclase (ROS-GC) is central to visual transduction; it generates cyclic GMP, the second messenger of the photon signal. Photoexcited rhodopsin initiates a biochemical cascade that leads to a drop in the intracellular level of cyclic GMP and closure of cyclic nucleotide gated ion channels. Recovery of the photoresponse requires resynthesis of cyclic GMP, typically by a pair of ROS-GCs, 1 and 2. In rods, ROS-GCs exist as complexes with guanylate cyclase activating proteins (GCAPs), which are Ca(2+)-sensing elements. There is a light-induced fall in intracellular Ca(2+). As Ca(2+) dissociates from GCAPs in the 20-200 nM range, ROS-GC activity rises to quicken the photoresponse recovery. GCAPs then progressively turn down ROS-GC activity as Ca(2+) and cyclic GMP levels return to baseline. To date, GCAPs mediate the only known mechanism of ROS-GC regulation in the photoreceptors. However, in mammalian cone outer segments, cone synapses and ON bipolar cells, another Ca(2+) sensor protein, S100B, complexes with ROS-GC1 and senses the Ca(2+) signal with a K1/2 of 400 nM. Unlike GCAPs, S100B stimulates ROS-GC activity when Ca(2+) is bound. Thus, the ROS-GC system in cones functions as a Ca(2+) bimodal switch; with rising intracellular Ca(2+), its activity is first turned down by GCAPs and then turned up by S100B. This presentation provides a historical perspective on the role of S100B in the photoreceptors, offers a pictorial model for the "bimodal" operation of the ROS-GC switch and projects future tasks that are needed to understand its operation. Some accounts of this review have been adopted from the original publications of these authors.

15.
Front Mol Neurosci ; 7: 17, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672425

RESUMO

Atrial natriuretic factor receptor guanylate cyclase (ANF-RGC), was the first discovered member of the mammalian membrane guanylate cyclase family. The hallmark feature of the family is that a single protein contains both the site for recognition of the regulatory signal and the ability to transduce it into the production of the second messenger, cyclic GMP. For over two decades, the family has been classified into two subfamilies, the hormone receptor subfamily with ANF-RGC being its paramount member, and the Ca(2+) modulated subfamily, which includes the rod outer segment guanylate cyclases, ROS-GC1 and 2, and the olfactory neuroepithelial guanylate cyclase. ANF-RGC is the receptor and the signal transducer of the most hypotensive hormones, ANF- and B-type natriuretic peptide (BNP). After binding these hormones at the extracellular domain it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates the production of cyclic GMP. Cyclic GMP then serves the second messenger role in biological responses of ANF and BNP such as natriuresis, diuresis, vasorelaxation, and anti-proliferation. Very recently another modus operandus for ANF-RGC was revealed. Its crux is that ANF-RGC activity is also regulated by Ca(2+). The Ca(2+) sensor neurocalcin d mediates this signaling mechanism. Strikingly, the Ca(2+) and ANF signaling mechanisms employ separate structural motifs of ANF-RGC in modulating its core catalytic domain in accelerating the production of cyclic GMP. In this review the biochemistry and physiology of these mechanisms with emphasis on cardiovascular regulation will be discussed.

16.
Biochemistry ; 52(13): 2337-47, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23464624

RESUMO

ANF-RGC is the prototype membrane guanylate cyclase, both the receptor and the signal transducer of the hormones ANF and BNP. After binding them at the extracellular domain, it, at its intracellular domain, signals activation of the C-terminal catalytic module and accelerates production of the second messenger, cyclic GMP. This, in turn, controls the physiological processes of blood pressure, cardiovascular function, fluid secretion, and others: metabolic syndrome, obesity, and apoptosis. The biochemical mechanism by which this single molecule controls these diverse processes, explicitly blood pressure regulation, is the subject of this study. In line with the concept that the structural modules of ANF-RGC are designed to respond to more than one yet distinctive signals, the study demonstrates the construction of a novel ANF-RGC-In-gene-(669)WTAPELL(675) mouse model. Through this model, the study establishes that (669)WTAPELL(675) is a vital ANF signal transducer motif of the guanylate cyclase. Its striking physiological features linked with their biochemistry are the following. (1) It controls the hormonally dependent cyclic GMP production in the kidney and the adrenal gland. Its deletion causes (2) hypertension and (3) cardiac hypertrophy. (4) These mice show higher levels of the plasma aldosterone. For the first time, a mere seven-amino acid-encoded motif of the mouse gene has been directly linked with the physiological control of blood pressure regulation, a detailed biochemistry of this linkage has been established, and a model for this linkage has been described.


Assuntos
Pressão Sanguínea , Receptores do Fator Natriurético Atrial/química , Receptores do Fator Natriurético Atrial/metabolismo , Aldosterona/sangue , Motivos de Aminoácidos , Animais , Células COS , Cálcio/metabolismo , Cardiomegalia/genética , Domínio Catalítico , Chlorocebus aethiops , Camundongos , Receptores do Fator Natriurético Atrial/genética , Deleção de Sequência , Transdução de Sinais
17.
Biochemistry ; 51(46): 9394-405, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23088492

RESUMO

ANF-RGC is the prototype receptor membrane guanylate cyclase that is both the receptor and the signal transducer of the most hypotensive hormones, ANF and BNP. It is a single-transmembrane protein. After binding these hormones at the extracellular domain, ANF-RGC at its intracellular domain signals the activation of the C-terminal catalytic module and accelerates the production of the second messenger, cyclic GMP, which controls blood pressure, cardiac vasculature, and fluid secretion. At present, this is the sole transduction mechanism and the physiological function of ANF-RGC. Through comprehensive studies involving biochemistry, immunohistochemistry, and blood pressure measurements in mice with targeted gene deletions, this study demonstrates a new signaling model of ANF-RGC that also controls blood pressure. In this model, (1) ANF-RGC is not the transducer of ANF and BNP, (2) its extracellular domain is not used for signaling, and (3) the signal flow is not downstream from the extracellular domain to the core catalytic domain. Instead, the signal is the intracellular Ca(2+), which is translated at the site of its reception, at the core catalytic domain of ANF-RGC. A model for this Ca(2+) signal transduction is diagrammed. It captures Ca(2+) through its Ca(2+) sensor myristoylated neurocalcin δ and upregulates ANF-RGC activity with a K(1/2) of 0.5 µM. The neurocalcin δ-modulated domain resides in the (849)DIVGFTALSAESTPMQVV(866) segment of ANF-RGC, which is a part of the core catalytic domain. Thereby, ANF-RGC is primed to receive, transmit, and translate the Ca(2+) signals into the generation of cyclic GMP at a rapid rate. The study defines a new paradigm of membrane guanylate cyclase signaling, which is linked to the physiology of cardiac vasculature regulation and possibly also to fluid secretion.


Assuntos
Pressão Sanguínea , Cálcio/metabolismo , Guanilato Ciclase/metabolismo , Transdução de Sinais , Animais , Células COS , Domínio Catalítico , Chlorocebus aethiops , Imuno-Histoquímica
18.
Biochemistry ; 51(23): 4650-7, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22642846

RESUMO

Photoreceptor ROS-GC1 (rod outer segment membrane guanylate cyclase) is a vital component of phototransduction. It is a bimodal Ca(2+) signal transduction switch, operating between 20 and ∼1000 nM. Modulated by Ca(2+) sensors guanylate cyclase activating proteins 1 and 2 (GCAP1 and GCAP2, respectively), decreasing [Ca(2+)](i) from 200 to 20 nM progressively turns it "on", as does the modulation by the Ca(2+) sensor S100B, increasing [Ca(2+)](i) from 100 to 1000 nM. The GCAP mode plays a vital role in phototransduction in both rods and cones and the S100B mode in the transmission of neural signals to cone ON-bipolar cells. Through a programmed domain deletion, expression, in vivo fluorescence spectroscopy, and in vitro reconstitution experiments, this study demonstrates that the biochemical mechanisms modulated by two GCAPs in Ca(2+) signaling of ROS-GC1 activity are totally different. (1) They involve different structural domains of ROS-GC1. (2) Their signal migratory pathways are opposite: GCAP1 downstream and GCAP2 upstream. (3) Importantly, the isolated catalytic domain, translating the GCAP-modulated Ca(2+) signal into the generation of cyclic GMP, in vivo, exists as a homodimer, the two subunits existing in an antiparallel conformation. Furthermore, the findings demonstrate that the N-terminally placed signaling helix domain is not required for the catalytic domain's dimeric state. The upstream GCAP2-modulated pathway is the first of its kind to be observed for any member of the membrane guanylate cyclase family. It defines a new model of Ca(2+) signal transduction.


Assuntos
Membrana Celular/enzimologia , Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Células COS , Chlorocebus aethiops , Regulação da Expressão Gênica , Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Proteínas Recombinantes , Transdução de Sinais
19.
Cell Physiol Biochem ; 29(3-4): 417-30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22508049

RESUMO

Rod outer segment membrane guanylate cyclase (ROS-GC1) is a bimodal Ca(2+) signal transduction switch. Lowering [Ca(2+)](i) from 200 to 20 nM progressively turns it "ON" as does raising [Ca(2+)](i) from 500 to 5000 nM. The mode operating at lower [Ca(2+)](i) plays a vital role in phototransduction in both rods and cones. The physiological function of the mode operating at elevated [Ca(2+)](i) is not known. Through comprehensive studies on mice involving gene deletions, biochemistry, immunohistochemistry, electroretinograms and single cell recordings, the present study demonstrates that the Ca(2+)-sensor S100B coexists with and is physiologically linked to ROS-GC1 in cones but not in rods. It up-regulates ROS-GC1 activity with a K(1/2) for Ca(2+) greater than 500 nM and modulates the transmission of neural signals to cone ON-bipolar cells. Furthermore, a possibility is raised that under pathological conditions where [Ca(2+)](i) levels rise to and perhaps even enter the micromolar range, the S100B signaling switch will be turned "ON" causing an explosive production of CNG channel opening and further rise in [Ca(2+)](i) in cone outer segments. The findings define a new cone-specific Ca(2+)-dependent feature of photoreceptors and expand our understanding of the operational principles of phototransduction machinery.


Assuntos
Cálcio/metabolismo , Guanilato Ciclase/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptores de Superfície Celular/metabolismo , Células Fotorreceptoras Retinianas Cones/enzimologia , Segmento Externo da Célula Bastonete/enzimologia , Proteínas S100/metabolismo , Animais , GMP Cíclico/genética , GMP Cíclico/metabolismo , Ativação Enzimática , Guanilato Ciclase/genética , Imuno-Histoquímica , Transdução de Sinal Luminoso , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/genética , Receptores de Superfície Celular/genética , Células Bipolares da Retina/enzimologia , Células Bipolares da Retina/metabolismo , Células Bipolares da Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/fisiologia , Segmento Externo da Célula Bastonete/metabolismo , Segmento Externo da Célula Bastonete/fisiologia , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/genética , Membranas Sinápticas/enzimologia , Membranas Sinápticas/metabolismo , Membranas Sinápticas/fisiologia
20.
Front Mol Neurosci ; 5: 44, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22509151

RESUMO

THE MEMBRANE GUANYLATE CYCLASE FAMILY HAS BEEN BRANCHED INTO THREE SUBFAMILIES: natriuretic peptide hormone surface receptors, Ca(2+)-modulated neuronal ROS-GC, and Ca(2+)-modulated odorant surface receptor ONE-GC. The first subfamily is solely modulated by the extracellularly generated hormonal signals; the second, by the intracellularly generated sensory and sensory-linked signals; and the third, by combination of these two. The present study defines a new paradigm and a new mechanism of Ca(2+) signaling. (1) It demonstrates for the first time that ANF-RGC, the prototype member of the surface receptor subfamily, is stimulated by free [Ca(2+)](i). The stimulation occurs via myristoylated form of neurocalcin δ, and both the guanylate cyclase and the calcium sensor neurocalcin δ are present in the glomerulosa region of the adrenal gland. (2) The EF-2, EF-3 and EF-4 hands of GCAP1 sense the progressive increment of [Ca(2+)](i) and with a K(1/2) of 100 nM turn ROS-GC1 "OFF." In total reversal, the same EF hands upon sensing the progressive increment of [Ca(2+)](i) with K(1/2) turn ONE-GC "ON." The findings suggest a universal Ca(2+)-modulated signal transduction theme of the membrane guanylate cyclase family; demonstrate that signaling of ANF-RGC occurs by the peptide hormones and also by [Ca(2+)](i) signals; that for the Ca(2+) signal transduction, ANF-RGC functions as a two-component transduction system consisting of the Ca(2+) sensor neurocalcin δ and the transducer ANF-RGC; and that the neurocalcin δ in this case expands beyond its NCS family. Furthermore, the study shows a novel mechanism of the [Ca(2+)](i) sensor GCAP1 where it acts as an antithetical NCS for the signaling mechanisms of ROS-GC1 and ONE-GC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...