Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37580082

RESUMO

Huntington's disease (HD) is a movement disorder caused by a mutation in the Huntingtin gene that leads to severe neurodegeneration. Molecular mechanisms of HD are not sufficiently understood, and no cure is currently available. Here, we demonstrate neuroprotective effects of hepatoma-derived growth factor (HDGF) in cellular and mouse HD models. We show that HD-vulnerable neurons in the striatum and cortex express lower levels of HDGF than resistant ones. Moreover, lack of endogenous HDGF exacerbated motor impairments and reduced the life span of R6/2 Huntington's disease mice. AAV-mediated delivery of HDGF into the brain reduced mutant Huntingtin inclusion load, but had no significant effect on motor behavior or life span. Interestingly, both nuclear and cytoplasmic versions of HDGF were efficient in rescuing mutant Huntingtin toxicity in cellular HD models. Moreover, extracellular application of recombinant HDGF improved viability of mutant Huntingtin-expressing primary neurons and reduced mutant Huntingtin aggregation in neural progenitor cells differentiated from human patient-derived induced pluripotent stem cells. Our findings provide new insights into the pathomechanisms of HD and demonstrate neuroprotective potential of HDGF in neurodegeneration.


Assuntos
Doença de Huntington , Fármacos Neuroprotetores , Camundongos , Humanos , Animais , Doença de Huntington/genética , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Neurônios/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
2.
Nat Commun ; 14(1): 560, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732333

RESUMO

Amyloid-like aggregates of the microtubule-associated protein Tau are associated with several neurodegenerative disorders including Alzheimer's disease. The existence of cellular machinery for the removal of such aggregates has remained unclear, as specialized disaggregase chaperones are thought to be absent in mammalian cells. Here we show in cell culture and in neurons that the hexameric ATPase valosin-containing protein (VCP) is recruited to ubiquitylated Tau fibrils, resulting in their efficient disaggregation. Aggregate clearance depends on the functional cooperation of VCP with heat shock 70 kDa protein (Hsp70) and the ubiquitin-proteasome machinery. While inhibition of VCP activity stabilizes large Tau aggregates, disaggregation by VCP generates seeding-active Tau species as byproduct. These findings identify VCP as a core component of the machinery for the removal of neurodegenerative disease aggregates and suggest that its activity can be associated with enhanced aggregate spreading in tauopathies.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Humanos , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Doenças Neurodegenerativas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Mamíferos/metabolismo
3.
Front Neurosci ; 16: 1022251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225731

RESUMO

Huntington's disease (HD) is a debilitating hereditary motor disorder caused by an expansion of the CAG triplet repeat in the Huntingtin gene. HD causes neurodegeneration particularly in the basal ganglia and neocortex. In the cortex, glutamatergic pyramidal neurons are known to be severely affected by the disease, but the involvement of GABAergic interneurons remains unclear. Here, we use a combination of immunostaining and genetic tracing to investigate histological changes in three major cortical interneuron types - parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP) interneurons - in the R6/2 and zQ175DN mouse models of HD. In R6/2 mice, we find a selective reduction in SST and VIP, but not PV-positive cells. However, genetic labeling reveals unchanged cell numbers for all the interneuron types, pointing to molecular marker loss in the absence of cell death. We also observe a reduction in cell body size for all three interneuron populations. Furthermore, we demonstrate progressive accumulation of mutant Huntingtin (mHTT) inclusion bodies in interneurons, which occurs faster in SST and VIP compared to PV cells. In contrast to the R6/2 model, heterozygous zQ175DN knock-in HD mice do not show any significant histological changes in cortical cell types at the age of 12 months, apart from the presence of mHTT inclusions, which are abundant in pyramidal neurons and rare in interneurons. Taken together, our findings point to differential molecular changes in cortical interneuron types of HD mice.

5.
Front Mol Neurosci ; 15: 829365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345600

RESUMO

Cellular health depends on the integrity and functionality of the proteome. Each cell is equipped with a protein quality control machinery that maintains protein homeostasis (proteostasis) by helping proteins adopt and keep their native structure, and ensuring the degradation of damaged proteins. Postmitotic cells such as neurons are especially vulnerable to disturbances of proteostasis. Defects of protein quality control occur in aging and have been linked to several disorders, including neurodegenerative diseases. However, the exact nature and time course of such disturbances in the context of brain diseases remain poorly understood. Sensors that allow visualization and quantitative analysis of proteostasis capacity in neurons are essential for gaining a better understanding of disease mechanisms and for testing potential therapies. Here, I provide an overview of available biosensors for assessing the functionality of the neuronal proteostasis network, point out the advantages and limitations of different sensors, and outline their potential for biological discoveries and translational applications.

6.
Life Sci Alliance ; 5(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34933920

RESUMO

The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like ß-sheet proteins (ß proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, ß proteins interact with and sequester AP-3 µ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3µ1 expression ameliorates neurotoxicity caused by ß proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.


Assuntos
Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Mutação com Ganho de Função , Neurônios/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Proteínas Amiloidogênicas/ultraestrutura , Sobrevivência Celular/genética , Expressão Gênica , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Neurônios/ultraestrutura , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Transdução de Sinais
7.
Nat Commun ; 12(1): 4863, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381050

RESUMO

Spreading of aggregate pathology across brain regions acts as a driver of disease progression in Tau-related neurodegeneration, including Alzheimer's disease (AD) and frontotemporal dementia. Aggregate seeds released from affected cells are internalized by naïve cells and induce the prion-like templating of soluble Tau into neurotoxic aggregates. Here we show in a cellular model system and in neurons that Clusterin, an abundant extracellular chaperone, strongly enhances Tau aggregate seeding. Upon interaction with Tau aggregates, Clusterin stabilizes highly potent, soluble seed species. Tau/Clusterin complexes enter recipient cells via endocytosis and compromise the endolysosomal compartment, allowing transfer to the cytosol where they propagate aggregation of endogenous Tau. Thus, upregulation of Clusterin, as observed in AD patients, may enhance Tau seeding and possibly accelerate the spreading of Tau pathology.


Assuntos
Clusterina/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/metabolismo , Animais , Clusterina/genética , Progressão da Doença , Endocitose , Humanos , Camundongos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas/patologia , Ligação Proteica , alfa-Sinucleína/metabolismo , Proteínas tau/genética
8.
EMBO J ; 40(19): e107260, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410010

RESUMO

The cellular protein quality control machinery is important for preventing protein misfolding and aggregation. Declining protein homeostasis (proteostasis) is believed to play a crucial role in age-related neurodegenerative disorders. However, how neuronal proteostasis capacity changes in different diseases is not yet sufficiently understood, and progress in this area has been hampered by the lack of tools to monitor proteostasis in mammalian models. Here, we have developed reporter mice for in vivo analysis of neuronal proteostasis. The mice express EGFP-fused firefly luciferase (Fluc-EGFP), a conformationally unstable protein that requires chaperones for proper folding, and that reacts to proteotoxic stress by formation of intracellular Fluc-EGFP foci and by reduced luciferase activity. Using these mice, we provide evidence for proteostasis decline in the aging brain. Moreover, we find a marked reaction of the Fluc-EGFP sensor in a mouse model of tauopathy, but not in mouse models of Huntington's disease. Mechanistic investigations in primary neuronal cultures demonstrate that different types of protein aggregates have distinct effects on the cellular protein quality control. Thus, Fluc-EGFP reporter mice enable new insights into proteostasis alterations in different diseases.


Assuntos
Envelhecimento/metabolismo , Suscetibilidade a Doenças , Genes Reporter , Camundongos Transgênicos , Neurônios/metabolismo , Proteostase , Envelhecimento/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Doença de Huntington/etiologia , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Agregados Proteicos , Agregação Patológica de Proteínas , Dobramento de Proteína , Deficiências na Proteostase/etiologia , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Tauopatias/etiologia , Tauopatias/metabolismo , Tauopatias/patologia
9.
Nat Commun ; 12(1): 2110, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854052

RESUMO

The molecular architecture of α-Synuclein (α-Syn) inclusions, pathognomonic of various neurodegenerative disorders, remains unclear. α-Syn inclusions were long thought to consist mainly of α-Syn fibrils, but recent reports pointed to intracellular membranes as the major inclusion component. Here, we use cryo-electron tomography (cryo-ET) to image neuronal α-Syn inclusions in situ at molecular resolution. We show that inclusions seeded by α-Syn aggregates produced recombinantly or purified from patient brain consist of α-Syn fibrils crisscrossing a variety of cellular organelles. Using gold-labeled seeds, we find that aggregate seeding is predominantly mediated by small α-Syn fibrils, from which cytoplasmic fibrils grow unidirectionally. Detailed analysis of membrane interactions revealed that α-Syn fibrils do not contact membranes directly, and that α-Syn does not drive membrane clustering. Altogether, we conclusively demonstrate that neuronal α-Syn inclusions consist of α-Syn fibrils intermixed with membranous organelles, and illuminate the mechanism of aggregate seeding and cellular interaction.


Assuntos
Corpos de Inclusão/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Microscopia Crioeletrônica , Humanos , Corpos de Inclusão/química , Atrofia de Múltiplos Sistemas/genética , Neurônios/química , alfa-Sinucleína/genética
10.
Front Neurosci ; 14: 82, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116525

RESUMO

Huntington's disease (HD) is a hereditary neurodegenerative disorder that typically manifests in midlife with motor, cognitive, and/or psychiatric symptoms. The disease is caused by a CAG triplet expansion in exon 1 of the huntingtin gene and leads to a severe neurodegeneration in the striatum and cortex. Classical electrophysiological studies in genetic HD mouse models provided important insights into the disbalance of excitatory, inhibitory and neuromodulatory inputs, as well as progressive disconnection between the cortex and striatum. However, the involvement of local cortical and striatal microcircuits still remains largely unexplored. Here we review the progress in understanding HD-related impairments in the cortical and basal ganglia circuits, and outline new opportunities that have opened with the development of modern circuit analysis methods. In particular, in vivo imaging studies in mouse HD models have demonstrated early structural and functional disturbances within the cortical network, and optogenetic manipulations of striatal cell types have started uncovering the causal roles of certain neuronal populations in disease pathogenesis. In addition, the important contribution of astrocytes to HD-related circuit defects has recently been recognized. In parallel, unbiased systems biology studies are providing insights into the possible molecular underpinnings of these functional defects at the level of synaptic signaling and neurotransmitter metabolism. With these approaches, we can now reach a deeper understanding of circuit-based HD mechanisms, which will be crucial for the development of effective and targeted therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA