Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591467

RESUMO

The objective of this research was to develop a surface modification for the NiTi shape memory alloy, thereby enabling its long-term application in implant medicine. This was achieved through the creation of innovative multifunctional hybrid layers comprising a nanometric molecular system of silver-rutile (Ag-TiO2), known for its antibacterial properties, in conjunction with bioactive submicro- and nanosized hydroxyapatite (HAp). The multifunctional, continuous, crack-free coatings were produced using the electrophoretic deposition method (EPD) at 20 V/1 min. Structural and morphological analyses through Raman spectrometry and scanning electron microscopy (SEM) provided comprehensive insights into the obtained coating. The silver within the layer existed in the form of nanometric silver carbonates (Ag2CO3) and metallic nanosilver. Based on DTA/TG results, dilatometric measurements, and high-temperature microscopy, the heat treatment temperature for the deposited layers was set at 800 °C for 2 h. The procedures applied resulted in the creation of a new generation of materials with a distinct structure compared with the initial nanopowders. The resulting composite layer, measuring 2 µm in thickness, comprised hydroxyapatite (HAp), apatite carbonate (CHAp), metallic silver, silver oxides, Ag@C, and rutile exhibiting a defective structure. This structural characteristic contributes significantly to its heightened activity, influencing both bioactivity and biocompatibility properties.

2.
Nanomaterials (Basel) ; 14(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392710

RESUMO

In response to the persistent challenge of heavy and noble metal environmental contamination, our research explores a new idea to capture silver through porous spherical silica nanostructures. The aim was realized using microwave radiation at varying power (P = 150 or 800 W) and exposure times (t = 60 or 150 s). It led to the development of a silica surface with enhanced metal-capture capacity. The microwave-assisted silica surface modification influences the notable changes within the carrier but also enforces the crystallization process of silver nanoparticles with different morphology, structure, and chemical composition. Microwave treatment can also stimulate the formation of core-shell bioactive Ag/Ag2CO3 heterojunctions. Due to the silver nanoparticles' sphericity and silver carbonate's presence, the modified nanocomposites exhibited heightened toxicity against common microorganisms, such as E. coli and S. epidermidis. Toxicological assessments, including minimum inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50) determinations, underscored the efficacy of the nanocomposites. This research represents a significant stride in addressing pollution challenges. It shows the potential of microwave-modified silicas in the fight against environmental contamination. Microwave engineering underscores a sophisticated approach to pollution remediation and emphasizes the pivotal role of nanotechnology in shaping sustainable solutions for environmental stewardship.

3.
Materials (Basel) ; 16(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37629866

RESUMO

Using NiTi alloys with shape memory for long-term medical implants requires modification of their surface due to the possible occurrence of corrosion. Hence, the surface of the staples used to join fractured bone within the craniofacial region was modified by applying a titanium oxy-nitrogen layer and a hydroxyapatite coating. Surface-modified clamps were tested in vivo using New Zealand white rabbits. After determining the mechanical characteristics of the bone and considering the initial state and surface modification, the diameter of the wire (used to make the clamps with the appropriate compression force) was selected. Implantation was performed on two groups of rabbits: experimental and control. In the experimental group, an intentionally induced bone fracture was treated in one tibia. On the second tibia, two additional clamps were applied to increase the possibility of a negative impact of the NiTi alloy on a living organism. After 6 weeks of application, a proper joining of the broken bone fragments was stated. Whereas after twelve weeks, no negative impact of the clamp material on a living organism, i.e., a rabbit, was found. Hence, the clamp with the modified surface can connect bone fragments in humans as well as small and medium-sized animals, with an extended range of use up to 12 weeks.

4.
J Funct Biomater ; 14(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37504870

RESUMO

The success of implant treatment is dependent on the osseointegration of the implant. The main goal of this work was to improve the biofunctionality of the Ti-13Nb-13Zr implant alloy by the production of oxide nanotubes (ONTs) layers for better anchoring in the bone and use as an intelligent carrier in drug delivery systems. Anodization of the Ti-13Nb-13Zr alloy was carried out in 0.5% HF, 1 M (NH4)2SO4 + 2% NH4F, and 1 M ethylene glycol + 4 wt.% NH4F electrolytes. Physicochemical characteristics of ONTs were performed by high-resolution electron microscopy (HREM), X-ray photoelectron spectroscopy (XPS), and scanning Kelvin probe (SKP). Water contact angle studies were conducted using the sitting airdrop method. In vitro biological properties and release kinetics of ibuprofen were investigated. The results of TEM and XPS studies confirmed the formation of the single-walled ONTs of three generations on the bi-phase (α + ß) Ti-13Nb-13Zr alloy. The ONTs were composed of oxides of the alloying elements. The proposed surface modification method ensured good hemolytic properties, no cytotoxity for L-929 mouse cells, good adhesion, increased surface wettability, and improved athrombogenic properties of the Ti-13Nb-13Zr alloy. Nanotubular surfaces allowed ibuprofen to be released from the polymer matrix according to the Gallagher-Corrigan model.

5.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047604

RESUMO

Heavy metals and other organic pollutants burden the environment, and their removal or neutralization is still inadequate. The great potential for development in this area includes porous, spherical silica nanostructures with a well-developed active surface and open porosity. In this context, we modified the surface of silica spheres using a microwave field (variable power and exposure time) to increase the metal uptake potential and build stable bioactive Ag2O/Ag2CO3 heterojunctions. The results showed that the power of the microwave field (P = 150 or 700 W) had a more negligible effect on carrier modification than time (t = 60 or 150 s). The surface-activated and silver-loaded silica carrier features like morphology, structure, and chemical composition correlate with microbial and antioxidant enzyme activity. We demonstrated that the increased sphericity of silver nanoparticles enormously increased toxicity against E. coli, B. cereus, and S. epidermidis. Furthermore, such structures negatively affected the antioxidant defense system of E. coli, B. cereus, and S. epidermidis through the induction of oxidative stress, leading to cell death. The most robust effects were found for nanocomposites in which the carrier was treated for an extended period in a microwave field.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Dióxido de Silício/química , Prata/química , Porosidade , Testes de Sensibilidade Microbiana , Micro-Ondas , Escherichia coli , Antioxidantes/farmacologia , Nanopartículas Metálicas/química , Nanocompostos/química , Antibacterianos/farmacologia
6.
Materials (Basel) ; 16(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36837038

RESUMO

Surface charge and in vitro corrosion resistance are some of the key parameters characterizing biomaterials in the interaction of the implant with the biological environment. Hence, this work investigates the in vitro bioelectrochemical behavior of newly developed oxide nanotubes (ONTs) layers of second-generation (2G) on a Ti-13Zr-13Nb alloy. The 2G ONTs were produced by anodization in 1 M (NH4)2SO4 solution with 2 wt.% of NH4F. The physical and chemical properties of the obtained bamboo-inspired 2G ONTs were characterized using scanning electron microscopy with field emission and energy dispersive spectroscopy. Zeta potential measurements for the examined materials were carried out using an electrokinetic analyzer in aqueous electrolytes of potassium chloride, phosphate-buffered saline and artificial blood. It was found that the electrolyte type and the ionic strength affect the bioelectrochemical properties of 2G ONTs layers. Open circuit potential and anodic polarization curve results proved the influence of anodizing on the improvement of in vitro corrosion resistance of the Ti-13Zr-13Nb alloy in PBS solution. The anodizing conditions used can be proposed for the production of long-term implants, which are not susceptible to pitting corrosion up to 9.4 V.

7.
Materials (Basel) ; 16(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837239

RESUMO

To functionalize and improve the biocompatibility of the surface of a medical implant made of NiTi shape memory alloy and used in practice, a clamp, multifunctional layers composed of amorphous TiO2 interlayer, and a hydroxyapatite coating were produced. Electrophoresis, as an efficient method of surface modification, resulted in the formation of a uniform coating under a voltage of 60 V and deposition time of 30 s over the entire volume of the implant. The applied heat treatment (800 °C/2 h) let toa dense, crack-free, well-adhered HAp coating with a thickness of ca. 1.5 µm. and a high crack resistance to deformation associated with the induction of the shape memory effect in the in the deformation range similar to the real implant work after implantation. Moreover, the obtained coating featured a hydrophilic (CA = 59.4 ± 0.3°) and high biocompatibility.

8.
Materials (Basel) ; 16(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770242

RESUMO

The biomedical Ti-13Zr-13Nb bi-phase (α + ß) alloy for long-term applications in implantology has recently been developed. The porous oxide nanotubes' (ONTs) layers of various geometries and lengths on the Ti-13Zr-13Nb alloy surface can be produced by anodizing to improve osseointegration. This work was aimed at how anodizing conditions determinatine the micromechanical and biotribological properties of the Ti-13Zr-13Nb alloy. First-generation (1G), second-generation (2G), and third-generation (3G) ONT layers were produced on the Ti-13Zr-13Nb alloy surface by anodizing. The microstructure was characterized using SEM. Micromechanical properties were investigated by the Vickers microhardness test under variable loads. Biotribological properties were examined in Ringer's solution in a reciprocating motion in the ball-on-flat system. The 2D roughness profiles method was used to assess the wear tracks of the tested materials. Wear scars' analysis of the ZrO2 ball was performed using optical microscopy. It was found that the composition of the electrolyte with the presence of fluoride ions was an essential factor influencing the micromechanical and biotribological properties of the obtained ONT layers. The three-body abrasion wear mechanism was proposed to explain the biotribological wear in Ringer's solution for the Ti-13Zr-13Nb alloy before and after anodizing.

9.
Materials (Basel) ; 15(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35329771

RESUMO

In the group of vanadium-free titanium alloys used for applications for long-term implants, the Ti-13Zr-13Nb alloy has recently been proposed. The production of a porous layer of oxide nanotubes (ONTs) with a wide range of geometries and lengths on the Ti-13Zr-13Nb alloy surface can increase its osteoinductive properties and enable intelligent drug delivery. This work concerns developing a method of electrochemical modification of the Ti-13Zr-13Nb alloy surface to obtain third-generation ONTs. The effect of the anodizing voltage on the microstructure and thickness of the obtained oxide layers was conducted in 1 M C2H6O2 + 4 wt% NH4F electrolyte in the voltage range 5-35 V for 120 min at room temperature. The obtained third-generation ONTs were characterized using SEM, EDS, SKP, and 2D roughness profiles methods. The preliminary assessment of corrosion resistance carried out in accelerated corrosion tests in the artificial atmosphere showed the high quality of the newly developed ONTs and the slight influence of neutral salt spray on their micromechanical properties.

10.
Materials (Basel) ; 14(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34683734

RESUMO

This work concerns the development of a method of functionalization of the surface of the biomedical Ti-6Al-7Nb alloy by producing oxide nanotubes (ONTs) with drug-eluting properties. Shaping of the morphology, microstructure, and thickness of the oxide layer was carried out by anodization in an aqueous solution of 1 M ethylene glycol with the addition of 0.2 M NH4F in the voltage range 5-100 V for 15-60 min at room temperature. The characterization of the physicochemical properties of the obtained ONTs was performed using SEM, XPS, and EDAX methods. ONTs have been shown to be composed mainly of TiO2, Al2O3, and Nb2O5. Single-walled ONTs with the largest specific surface area of 600 cm2 cm-2 can be obtained by anodization at 50 V for 60 min. The mechanism of ONT formation on the Ti-6Al-7Nb alloy was studied in detail. Gentamicin sulfate loaded into ONTs was studied using FTIR, TG, DTA, and DTG methods. Drug release kinetics was determined by UV-Vis spectrophotometry. The obtained ONTs can be proposed for use in modern implantology as carriers for drugs delivered locally in inflammatory conditions.

11.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419163

RESUMO

Recent years have seen the dynamic development of methods for functionalizing the surface of implants using biomaterials that can mimic the physical and mechanical nature of native tissue, prevent the formation of bacterial biofilm, promote osteoconduction, and have the ability to sustain cell proliferation. One of the concepts for achieving this goal, which is presented in this work, is to functionalize the surface of NiTi shape memory alloy by an atypical glass-like nanocomposite that consists of SiO2-TiO2 with silver nanoparticles. However, determining the potential medical uses of bio(nano)coating prepared in this way requires an analysis of its surface roughness, tribology, or wettability, especially in the context of the commonly used reference coat-forming hydroxyapatite (HAp). According to our results, the surface roughness ranged between (112 ± 3) nm (Ag-SiO2)-(141 ± 5) nm (HAp), the water contact angle was in the range (74.8 ± 1.6)° (Ag-SiO2)-(70.6 ± 1.2)° (HAp), while the surface free energy was in the range of 45.4 mJ/m2 (Ag-SiO2)-46.8 mJ/m2 (HAp). The adhesive force and friction coefficient were determined to be 1.04 (Ag-SiO2)-1.14 (HAp) and 0.247 ± 0.012 (Ag-SiO2) and 0.397 ± 0.034 (HAp), respectively. The chemical data showed that the release of the metal, mainly Ni from the covered NiTi substrate or Ag from Ag-SiO2 coating had a negligible effect. It was revealed that the NiTi alloy that was coated with Ag-SiO2 did not favor the formation of E. coli or S. aureus biofilm compared to the HAp-coated alloy. Moreover, both approaches to surface functionalization indicated good viability of the normal human dermal fibroblast and osteoblast cells and confirmed the high osteoconductive features of the biomaterial. The similarities of both types of coat-forming materials indicate an excellent potential of the silver-silica composite as a new material for the functionalization of the surface of a biomaterial and the development of a new type of functionalized implants.


Assuntos
Níquel/química , Próteses e Implantes , Ligas de Memória da Forma/química , Dióxido de Silício/química , Prata/química , Titânio/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Humanos , Teste de Materiais/métodos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Propriedades de Superfície , Molhabilidade
12.
Nanomaterials (Basel) ; 10(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353198

RESUMO

To solve the problem of human diseases caused by a combination of genetic and environmental factors or by microorganisms, intense research to find completely new materials is required. One of the promising systems in this area is the silver-silica nanocomposites and their derivatives. Hence, silver and silver oxide nanoparticles that were homogeneously distributed within a silica carrier were fabricated. Their average size was d = (7.8 ± 0.3) nm. The organic polymers (carboxymethylcellulose (CMC) and sodium alginate (AS)) were added to improve the biological features of the nanocomposite. The first system was prepared as a silver chlorine salt combination that was immersed on a silica carrier with coagulated particles whose size was d = (44.1 ± 2.3) nm, which coexisted with metallic silver. The second system obtained was synergistically interacted metallic and oxidized silver nanoparticles that were distributed on a structurally defective silica network. Their average size was d = (6.6 ± 0.7) nm. Physicochemical and biological experiments showed that the tiny silver nanoparticles in Ag/SiO2 and Ag/SiO2@AS inhibited E. coli, P. aeruginosa, S. aureus, and L. plantarum's cell growth as well as caused a high anticancer effect. On the other hand, the massive silver nanoparticles of Ag/SiO2@CMC had a weaker antimicrobial effect, although they highly interacted against PANC-1. They also generated reactive oxygen species (ROS) as well as the induction of apoptosis via the p53-independent mechanism.

13.
Materials (Basel) ; 13(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252333

RESUMO

The surface modification of NiTi shape memory alloys is a method for increasing their multi-functionalities. In our solution, hydroxyapatite powder was mixed with a chemically synthesized silicon dioxide/silver (nSiO2/Ag) nanocomposite in a different weight ratio between components (1:1, 5:1, and 10:1) and then electrophoretically deposited on the surface of the NiTi alloy, under various time and voltage conditions. Subsequently, uniform layers were subjected to heat treatment at 700 °C for 2 h in an argon atmosphere to improve the strength of their adhesion to the NiTi substrate. A change in linear dimensions of the co-deposited materials during the sintering process was also analyzed. After the heat treatment, XRD, Raman, and Scanning Electron Microscopy (SEM) + Energy Dispersive Spectrometer (EDS) studies revealed the formation of completely new composite coatings, which consisted of rutile and TiO2-SiO2 glass with silver oxide and HAp particles that were embedded into such coatings. It was found that spalling characterized the 1:1 ratio coating, while the others were crack-free, well-adhered, and capable of deformation to 3.5%. Coatings with a higher concentration of nanocomposite were rougher. Electrochemical impedance spectroscopy (EIS) tests in Ringer's solution revealed the capacitive behavior of the material with high corrosion resistance. The kinetics and susceptibility to pitting corrosion was the highest for the NiTi electrode that was coated with a 5:1 ratio HAp/nSiO2/Ag hybrid coating.

14.
Cell Death Differ ; 27(7): 2280-2292, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31996779

RESUMO

Heat shock can induce either cytoprotective mechanisms or cell death. We found that in certain human and mouse cells, including spermatocytes, activated heat shock factor 1 (HSF1) binds to sequences located in the intron(s) of the PMAIP1 (NOXA) gene and upregulates its expression which induces apoptosis. Such a mode of PMAIP1 activation is not dependent on p53. Therefore, HSF1 not only can activate the expression of genes encoding cytoprotective heat shock proteins, which prevents apoptosis, but it can also positively regulate the proapoptotic PMAIP1 gene, which facilitates cell death. This could be the primary cause of hyperthermia-induced elimination of heat-sensitive cells, yet other pro-death mechanisms might also be involved.


Assuntos
Apoptose , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais , Regulação para Cima/genética , Animais , Apoptose/genética , Caspases/metabolismo , Cromatina/metabolismo , Ativação Enzimática , Resposta ao Choque Térmico/genética , Íntrons/genética , Masculino , Camundongos Knockout , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteína Supressora de Tumor p53/metabolismo
15.
Materials (Basel) ; 14(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383620

RESUMO

In recent years, more and more emphasis has been placed on the development and functionalization of metallic substrates for medical applications to improve their properties and increase their applicability. Today, there are many different types of approaches and materials that are used for this purpose. Our idea was based on a combination of a chemically synthesized Ag-SiO2 nanocomposite and the electrophoretic deposition approach on a NiTi-shape memory substrate. As a result, silver-silica coating was developed on a previously passivated alloy, which was then subjected to sintering at 700 °C for 2 h. The micrometer-sized coat-forming material was composed of large agglomerates consisting of silica and a thin film of submicron- and nano- spherical-shaped particles built of silver, carbon, and oxygen. Structurally, the coatings consisted of a combination of nanometer-sized silver-carbonate that was embedded in thin amorphous silica and siloxy network. The temperature impact had forced morphological and structural changes such as the consolidation of the coat-forming material, and the partial coalescence of the silver and silica particles. As a result, a new continuous complex ceramic coating was formed and was analyzed in more detail using the XPS, XRD, and Raman methods. According to the structural and chemical analyses, the deposited Ag-SiO2 nanocomposite material's reorganization was due to its reaction with a passivated TiO2 layer, which formed an atypical glass-like composite that consisted of SiO2-TiO2 with silver particles that stabilized the network. Finally, the functionalization of the NiTi surface did not block the shape memory effect.

16.
ACS Appl Bio Mater ; 2(3): 987-998, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021389

RESUMO

In recent years, one of the more important and costly problems of modern medicine is the need to replace or supplement organs in order to improve the quality of human life. In this field, promising solutions seem to have been implants which are based on NiTi alloys with shape memory effects. Unfortunately, this material is susceptible to the corrosion and release of toxic nickel to the human organism. Hence, its application as a long-term material is strongly limited. Therefore, this paper presents a new solution which should help to improve the functionality of the NiTi alloy and elongate its medical stability to use. The idea was focused on functionalization of the implant surface by a biocompatible, multifunctional coating without any impact on the features of the substrate, i.e., the martensitic transformation responsible for shape memory effects. For this purpose, we prepared a colloidal suspension, composed of ß-TCP (particle size ∼450 nm) and the Ag/SiO2 nanocomposite which due to the electrophoretic deposition (EPD) led to the formation of structurally atypical calcium phosphosilicate coating. Those biomaterials formed a crack-free coating, adhering well to the NiTi surface when distributed over the entire surface, with low concentration of metallic and oxide silver (<3 at. %). At the same time, the coat-forming materials had resulted in the growth of a Gram-negative bacterial biofilm. Additionally, the additive of the silver-silica composite enhances cell proliferation, effectively a few times higher than commonly used coat-forming materials (e.g., pure ß-TCP).

17.
Int J Pediatr ; 2012: 537936, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22518177

RESUMO

Due to the functional and structural immaturity of different organ systems, preterms have a higher rate of morbidity and mortality. The prevention and treatment of the complications of prematurity is a major challenge in perinatal health care. Recently, there have been several multicenter research trials analysing the impact of prematurity or low birth weight on the health problems of children and adolescents. Many of these studies deal with the issue of pediatric hypertension. An analysis of 15 studies conducted in the years 1998-2011, in which blood pressure values in ex-preterm children were measured, was performed. Comparison was based on several issues: measurement method, cohorts age, size, and birthweight. It has been proven that hypertension occurs more often in former preterm infants; however the etiologic pathways that cause this condition still remain unclear. Moreover, pediatric hypertension is a significant problem, because of its transformation into adult hypertension and increased cardiovascular risk later in life. Therefore it is crucial to introduce wide-spread screening and detection of elevated blood pressure, especially among prematurely born children.

18.
J Pharm Biomed Anal ; 47(4-5): 659-69, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18450403

RESUMO

The BFR (Basis Function Regression) is an interesting alternative to common techniques (such as PCR or PLS) in chemometrics. It is based on projecting the spectral information onto some number of equally spaced spline bases, than obtaining integrals of resulted curves. Existing references show that in certain cases it can reduce almost twice the RMSEP values. As this technique is not so popular in chemometrics nor applied in pharmaceutical analysis, it is desirable to present its theoretical considerations and implementation (with example MATLAB/Octave code). As an illustrative example we present the chemometric model for content recognition of a tablet (12 possible compounds in binary or ternary combinations) from the UV spectrum of its methanolic extract. The BFR technique gave lowest prediction error and the estimators obtained have more meritorical meaning than in case of PCR, PLS and other techniques used for comparison. In our opinion this technique should be considered in any chemometric approach as it often shows better performance.


Assuntos
Modelos Teóricos , Preparações Farmacêuticas/análise , Comprimidos/análise , Tecnologia Farmacêutica/métodos , Algoritmos , Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/química , Calibragem , Ibuprofeno/análise , Ibuprofeno/química , Metanol/química , Análise de Regressão , Solventes/química , Espectrofotometria Ultravioleta/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...