Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105714

RESUMO

The neurotrophic growth factor brain-derived neurotrophic factor (BDNF) plays a crucial role in various neurodegenerative and psychiatric diseases, such as Alzheimer's disease, schizophrenia and depression. BDNF has been proposed as a potential biomarker for diagnosis, prognosis and monitoring therapy. Understanding the factors influencing BDNF levels and whether they follow a circadian rhythm is essential for interpreting fluctuations in BDNF measurements. We aimed to investigate the circadian rhythm of BDNF by collecting multiple peripheral venous blood samples from young, healthy male participants at 12 different time points over 24 h. In addition, vital parameters, cortisol and insulin like growth factor 1 (IGF1) were measured to explore potential regulatory mechanisms, interfering variables and their correlations with BDNF concentration. The findings revealed that plasma BDNF did not exhibit any significant fluctuations over 24 h, suggesting the absence of a circadian rhythm. However, serum BDNF levels decreased during sleep. Furthermore, serum BDNF showed a positive correlation with heart rate but a negative correlation with IGF1. No significant correlation was observed between cortisol and BDNF or IGF1. Although plasma BDNF suggests steady-state conditions, the decline of serum BDNF during the nocturnal period could be attributed to physical inactivity and associated with reduced haemodynamic blood flow (heart rate reduction during sleep). The type of sample collection (peripheral venous cannula vs. blood sampling using a butterfly system) does not significantly affect the measured BDNF levels. The sample collection during the day did not significantly affect BDNF analysis, emphasizing the importance of considering activity levels rather than timing when designing standardized protocols for BDNF assessments.

2.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062779

RESUMO

Brain-derived neurotrophic factor (BDNF) is a crucial mediator of neuronal plasticity. Here, we investigated the effects of controlled normobaric hypoxia (NH) combined with physical inactivity on BDNF blood levels and executive functions. A total of 25 healthy adults (25.8 ± 3.3 years, 15 female) were analyzed in a randomized controlled cross-over study. Each intervention began with a 30 min resting phase under normoxia (NOR), followed by a 90 min continuation of NOR or NH (peripheral oxygen saturation [SpO2] 85-80%). Serum and plasma samples were collected every 15 min. Heart rate and SpO2 were continuously measured. Before and after each exposure, cognitive tests were performed and after 24 h another follow-up blood sample was taken. NH decreased SpO2 (p < 0.001, ηp2 = 0.747) and increased heart rate (p = 0.006, ηp2 = 0.116) significantly. The 30-min resting phase under NOR led to a significant BDNF reduction in serum (p < 0.001, ηp2 = 0.581) and plasma (p < 0.001, ηp2 = 0.362). Continuation of NOR further significantly reduced BDNF after another 45 min (p = 0.018) in serum and after 30 min (p = 0.040) and 90 min (p = 0.005) in plasma. There was no significant BDNF decline under NH. A 24 h follow-up examination showed a significant decline in serum BDNF, both after NH and NOR. Our results show that NH has the potential to counteract physical inactivity-induced BDNF decline. Therefore, our study emphasizes the need for a physically active lifestyle and its positive effects on BDNF. This study also demonstrates the need for a standardized protocol for future studies to determine BDNF in serum and plasma.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Frequência Cardíaca , Hipóxia , Comportamento Sedentário , Humanos , Fator Neurotrófico Derivado do Encéfalo/sangue , Feminino , Masculino , Adulto , Hipóxia/sangue , Estudos Cross-Over , Exercício Físico , Adulto Jovem
3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339038

RESUMO

Parkinson's disease (PD) is associated with various deficits in sensing and responding to reductions in oxygen availability (hypoxia). Here we summarize the evidence pointing to a central role of hypoxia in PD, discuss the relation of hypoxia and oxygen dependence with pathological hallmarks of PD, including mitochondrial dysfunction, dopaminergic vulnerability, and alpha-synuclein-related pathology, and highlight the link with cellular and systemic oxygen sensing. We describe cases suggesting that hypoxia may trigger Parkinsonian symptoms but also emphasize that the endogenous systems that protect from hypoxia can be harnessed to protect from PD. Finally, we provide examples of preclinical and clinical research substantiating this potential.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína , Transtornos Parkinsonianos/patologia , Neurônios Dopaminérgicos/patologia , Hipóxia/patologia , Oxigênio
4.
J Clin Med ; 9(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326586

RESUMO

Accumulating evidence from animal and human studies supports the notion that physical exercise can enhance neuroplasticity and thus reduce the risk of several neurodegenerative diseases (e.g., dementia). However, the underlying neurobiological mechanisms of exercise induced neuroplasticity are still largely unknown. One potential mediator of exercise effects is the neurotrophin BDNF, which enhances neuroplasticity via different pathways (e.g., synaptogenesis, neurogenesis, long-term potentiation). Current research has shown that (i) increased peripheral lactate levels (following high intensity exercise) are associated with increased peripheral BDNF levels, (ii) lactate infusion at rest can increase peripheral and central BDNF levels and (iii) lactate plays a very complex role in the brain's metabolism. In this review, we summarize the role and relationship of lactate and BDNF in exercise induced neuroplasticity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA