Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(14): 3721-3727, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38546374

RESUMO

The understanding of the interfacial properties in perovskite devices under irradiation is crucial for their engineering. In this study we show how the electronic structure of the interface between CsPbBr3 perovskite nanocrystals (PNCs) and Au is affected by irradiation of X-rays, near-infrared (NIR), and ultraviolet (UV) light. The effects of X-ray and light exposure could be differentiated by employing low-dose X-ray photoelectron spectroscopy (XPS). Apart from the common degradation product of metallic lead (Pb0), a new intermediate component (Pbint) was identified in the Pb 4f XPS spectra after exposure to high intensity X-rays or UV light. The Pbint component is determined to be monolayer metallic Pb on-top of the Au substrate from underpotential deposition (UPD) of Pb induced from the breaking of the perovskite structure allowing for migration of Pb2+.

2.
Nano Lett ; 20(5): 3999-4006, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32283029

RESUMO

To date, defect-tolerance electronic structure of lead halide perovskite nanocrystals is limited to an optical feature in the visible range. Here, we demonstrate that IR sensitization of formamidinium lead iodine (FAPI) nanocrystal array can be obtained by its doping with PbS nanocrystals. In this hybrid array, absorption comes from the PbS nanocrystals while transport is driven by the perovskite which reduces the dark current compared to pristine PbS. In addition, we fabricate a field-effect transistor using a high capacitance ionic glass made of hybrid FAPI/PbS nanocrystal arrays. We show that the hybrid material has an n-type nature with an electron mobility of 2 × 10-3 cm2 V-1 s-1. However, the dark current reduction is mostly balanced by a loss of absorption. To overcome this limitation, we couple the FAPI/PbS hybrid to a guided mode resonator that can enhance the infrared light absorption.

3.
ACS Appl Mater Interfaces ; 11(36): 33116-33123, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31426628

RESUMO

Infrared applications remain too often a niche market due to their prohibitive cost. Nanocrystals offer an interesting alternative to reach cost disruption especially in the short-wave infrared (SWIR, λ < 1.7 µm) where material maturity is now high. Two families of materials are candidate for SWIR photoconduction: lead and mercury chalcogenides. Lead sulfide typically benefits from all the development made for a wider band gap such as the one made for solar cells, while HgTe takes advantage of the development relative to mid-wave infrared detectors. Here, we make a fair comparison of the two material detection properties in the SWIR and discuss the material stability. At such wavelengths, studies have been mostly focused on PbS rather than on HgTe, therefore we focus in the last part of the discussion on the effect of surface chemistry on the electronic spectrum of HgTe nanocrystals. We unveil that tuning the capping ligands is a viable strategy to adjust the material from the p-type to ambipolar. Finally, HgTe nanocrystals are integrated into multipixel devices to quantize spatial homogeneity and onto read-out circuits to obtain a fast and sensitive infrared laser beam profile.

4.
Adv Mater ; 30(25): e1706708, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29732633

RESUMO

The Mott transistor is a paradigm for a new class of electronic devices-often referred to by the term Mottronics-which are based on charge correlations between the electrons. Since correlation-induced insulating phases of most oxide compounds are usually very robust, new methods have to be developed to push such materials right to the boundary to the metallic phase in order to enable the metal-insulator transition to be switched by electric gating. Here, it is demonstrated that thin films of the prototypical Mott insulator LaTiO3 grown by pulsed laser deposition under oxygen atmosphere are readily tuned by excess oxygen doping across the line of the band-filling controlled Mott transition in the electronic phase diagram. The detected insulator to metal transition is characterized by a strong change in resistivity of several orders of magnitude. The use of suitable substrates and capping layers to inhibit oxygen diffusion facilitates full control of the oxygen content and renders the films stable against exposure to ambient conditions. These achievements represent a significant advancement in control and tuning of the electronic properties of LaTiO3+x thin films making it a promising channel material in future Mottronic devices.

5.
Adv Mater ; 28(34): 7443-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27332795

RESUMO

Insulating SrTiO3 (STO) can host 2D electron systems (2DESs) on its surfaces, caused by oxygen defects. This study shows that the STO surface exhibits phase separation once the 2DES is formed and relates this inhomogeneity to recently reported magnetic order at STO surfaces and interfaces. The results open pathways to exploit oxygen defects for engineering the electronic and magnetic properties of oxides.

7.
Phys Rev Lett ; 101(23): 237602, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19113593

RESUMO

Even though the semimetallic behavior of 1T-TiSe2 seemed to be well established by band structure calculations and photoemission results, this conclusion has been challenged recently. Two high-resolution photoemission investigations deduced semiconducting behavior, however with a very small band gap. Such conclusion from photoemission is afflicted, in principle, by the problem of determining an unoccupied conduction band by photoemission. This problem is solved here by the idea of H2O adsorption onto the van der Waals-like surface, causing a distinct bending of the bands and resulting in a filled lowest conduction band. The detailed analysis yields undoubtedly semiconducting behavior for 1T-TiSe2 and interesting properties of a semiconductor with extremely small band gap.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...