Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Plast ; 2016: 9802086, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27298742

RESUMO

Numerous studies show that 17ß-estradiol (E2) protects against Alzheimer's disease (AD) induced neurodegeneration. The E2-synthesizing enzyme aromatase is expressed in healthy hippocampi, but although the hippocampus is severely affected in AD, little is known about the expression of hippocampal aromatase in AD. To better understand the role of hippocampal aromatase in AD, we studied its expression in postmortem material from patients with AD and in a mouse model for AD (5xFAD mice). In human hippocampi, aromatase-immunoreactivity was observed in the vast majority of principal neurons and signal quantification revealed higher expression of aromatase protein in AD patients compared to age- and sex-matched controls. The tissue-specific first exons of aromatase I.f, PII, I.3, and I.6 were detected in hippocampi of controls and AD patients by RT-PCR. In contrast, 3-month-old, female 5xFAD mice showed lower expression of aromatase mRNA and protein (measured by qRT-PCR and semiquantitative immunohistochemistry) than WT controls; no such differences were observed in male mice. Our findings stress the importance of hippocampal aromatase expression in neurodegenerative diseases.


Assuntos
Doença de Alzheimer/enzimologia , Aromatase/biossíntese , Regulação Enzimológica da Expressão Gênica , Hipocampo/enzimologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Aromatase/genética , Feminino , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade
2.
J Neurosci ; 32(24): 8116-26, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22699893

RESUMO

Inhibitors of aromatase, the final enzyme of estradiol synthesis, are suspected of inducing memory deficits in women. In previous experiments, we found hippocampal spine synapse loss in female mice that had been treated with letrozole, a potent aromatase inhibitor. In this study, we therefore focused on the effects of letrozole on long-term potentiation (LTP), which is an electrophysiological parameter of memory and is known to induce spines, and on phosphorylation of cofilin, which stabilizes the spine cytoskeleton and is required for LTP in mice. In acute slices of letrozole-treated female mice with reduced estradiol serum concentrations, impairment of LTP started as early as after 6 h of treatment and progressed further, together with dephosphorylation of cofilin in the same slices. Theta-burst stimulation failed to induce LTP after 1 week of treatment. Impairment of LTP was followed by spine and spine synapse loss. The effects were confirmed in vitro by using hippocampal slice cultures of female mice. The sequence of effects in response to letrozole were similar in ovariectomized female and male mice, with, however, differences as to the degree of downregulation. Our data strongly suggest that impairment of LTP, followed by loss of mushroom spines and spine synapses in females, may have implications for memory deficits in women treated with letrozole.


Assuntos
Inibidores da Aromatase/farmacologia , Aromatase/fisiologia , Potenciação de Longa Duração/fisiologia , Nitrilas/farmacologia , Caracteres Sexuais , Triazóis/farmacologia , Animais , Células Cultivadas , Cofilina 1/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Estradiol/sangue , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Letrozol , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Sinapses/ultraestrutura
3.
Psychoneuroendocrinology ; 34 Suppl 1: S123-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19781860

RESUMO

Estrogen-induced synaptic plasticity was frequently shown by an increase of spines at apical dendrites of CA1 pyramidal neurons after systemic application of estradiol to ovariectomized rats. Surprisingly, exogenous application of estradiol to hippocampal cultures had no effect on spines and on spine synapses, although quantitative immunohistochemistry revealed an upregulation of spinophilin and of synaptophysin, in these cultures. The role of synaptophysin as a presynaptic marker and of spinophilin as a postsynaptic marker, appears questionable from these discrepancies. In contrast, synaptopodin, a marker protein of "mature" mushroom-shaped spines, was downregulated after treatment of hippocampal cultures with estradiol. Synaptopodin is strongly associated to the spine apparatus, a spine-specific cell organelle, which is present in 80% of all mushroom-shaped spines. Consistently, we found a reduction in the number of spines, containing a spine apparatus in response to estradiol, suggesting that the presence of a spine apparatus in many but not all spines is very likely a result of their dynamic character. In summary, synaptic proteins appear to be regulated by estradiol, independent of its function on spine and spine synapse formation.


Assuntos
Estradiol/farmacologia , Estradiol/fisiologia , Hipocampo/efeitos dos fármacos , Sinapses/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Regulação para Baixo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Sinapses/ultraestrutura , Sinaptofisina/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...