Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Expert Opin Drug Metab Toxicol ; : 1-9, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252168

RESUMO

INTRODUCTION: The treatment of advanced cervical cancer is continuously developing. There is a critical need to explore new treatment options to improve cure rates and make treatment more affordable. Despite efforts in prevention, cervical cancer remains the fourth most common cancer worldwide in terms of both incidence and mortality. AREAS COVERED: This article offers an updated and critical analysis of angiogenesis inhibitors used in the treatment of advanced cervical cancer. It should be noted that this is not a systematic review. EXPERT OPINION: Bevacizumab is currently the primary antiangiogenic agent used alongside chemotherapy and has become the standard of care for advanced cervical cancer. However, there are still uncertainties regarding the molecular mechanisms and associations in cervical cancer that could help in optimizing the use of Bevacizumab. Factors such as cost, toxicity, and methodological issues in the GOG-240 trial must be considered.

2.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273276

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell malignancy worldwide. Molecular classifications have tried to improve cure rates. We prospectively examined and correlated the mutational landscape with the clinical features and outcomes of 185 Mexican patients (median age 59.3 years, 50% women) with newly diagnosed DLBCL. A customized panel of 79 genes was designed, based on previous international series. Most patients had ECOG performance status (PS) < 2 (69.2%), advanced-stage disease (72.4%), germinal-center phenotype (68.1%), and double-hit lymphomas (14.1%). One hundred and ten (59.5%) patients had at least one gene with driver mutations. The most common mutated genes were as follows: TP53, EZH2, CREBBP, NOTCH1, and KMT2D. The median follow-up was 42 months, and the 5-year relapse-free survival (RFS) and overall survival (OS) rates were 70% and 72%, respectively. In the multivariate analysis, both age > 50 years and ECOG PS > 2 were significantly associated with a worse OS. Our investigation did not reveal any discernible correlation between the presence of a specific mutation and survival. In conclusion, using a customized panel, we characterized the mutational landscape of a large cohort of Mexican DLBCL patients. These results need to be confirmed in further studies.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Linfoma Difuso de Grandes Células B , Mutação , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Feminino , Pessoa de Meia-Idade , Masculino , México/epidemiologia , Idoso , Adulto , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Idoso de 80 Anos ou mais , Estudos Prospectivos , Receptor Notch1/genética , Proteína de Ligação a CREB/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Neoplasias/genética , Adulto Jovem , Prognóstico , Adolescente , Proteínas de Ligação a DNA
3.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124913

RESUMO

In this work, we performed anti-proliferative assays for the compound N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) on breast cancer (BC) cells (MCF-7, SKBR3, and triple-negative BC (TNBC) MDA-MB-231 cells) to explore its pharmacological mechanism regarding the type of cell death associated with G protein-coupled estrogen receptor (GPER) expression. The results show that HO-AAVPA induces cell apoptosis at 5 h or 48 h in either estrogen-dependent (MCF-7) or -independent BC cells (SKBR3 and MDA-MB-231). At 5 h, the apoptosis rate for MCF-7 cells was 68.4% and that for MDA-MB-231 cells was 56.1%; at 48 h, that for SKBR3 was 61.6%, that for MCF-7 cells was 54.9%, and that for MDA-MB-231 (TNBC) was 43.1%. HO-AAVPA increased the S phase in MCF-7 cells and reduced the G2/M phase in MCF-7 and MDA-MB-231 cells. GPER expression decreased more than VPA in the presence of HO-AAVPA. In conclusion, the effects of HO-AAVPA on cell apoptosis could be modulated by epigenetic effects through a decrease in GPER expression.


Assuntos
Apoptose , Neoplasias da Mama , Pontos de Checagem do Ciclo Celular , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Humanos , Apoptose/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Estrogênio/metabolismo , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células MCF-7 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Amidas/farmacologia , Amidas/química
4.
Am J Cancer Res ; 14(6): 3068-3082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005694

RESUMO

Lymphoma is a disease that affects countless lives each year. In order to combat this disease, researchers have been exploring the potential of DNMTi and HDACi drugs. These drugs target the cellular processes that contribute to lymphomagenesis and treatment resistance. Our research evaluated the effectiveness of a combination of two such drugs, hydralazine (DNMTi) and valproate (HDACi), in B-cell and T-cell lymphoma cell lines. Here we show that the combination of hydralazine and valproate decreased the viability of cells over time, leading to the arrest of cell-cycle and apoptosis in both B and T-cells. This combination of drugs proved to be synergistic, with each drug showing significant growth inhibition individually. Microarray analyses of HuT 78 and Raji cells showed that the combination of hydralazine and valproate resulted in the up-regulation of 562 and 850 genes, respectively, while down-regulating 152 and 650 genes. Several proapoptotic and cell cycle-related genes were found to be up-regulated. Notably, three and five of the ten most up-regulated genes in HuT 78 and Raji cells, respectively, were related to immune function. In summary, our study suggests that the combination of hydralazine and valproate is an effective treatment option for both B- and T-lymphomas. These findings are highly encouraging, and we urge further clinical evaluation to validate our research and potentially improve lymphoma treatment.

5.
Expert Rev Anticancer Ther ; 24(8): 665-677, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38913911

RESUMO

INTRODUCTION: The pharmacological treatment of cancer has evolved from cytotoxic to molecular targeted therapy. The median survival gains of 124 drugs approved by the FDA from 2003 to 2021 is 2.8 months. Targeted therapy is based on the somatic mutation theory, which has some paradoxes and limitations. While efforts of targeted therapy must continue, we must study newer approaches that could advance therapy and affordability for patients. AREAS COVERED: This work briefly overviews how cancer therapy has evolved from cytotoxic chemotherapy to current molecular-targeted therapy. The limitations of the one-target, one-drug approach considering cancer as a robust system and the basis for multitargeting approach with polypharmacotherapy using repurposing drugs. EXPERT OPINION: Multitargeted polypharmacotherapy for cancer with repurposed drugs should be systematically investigated in preclinical and clinical studies. Remarkably, most of these proposed drugs already have a long history in the clinical setting, and their safety is known. In principle, the risk of their simultaneous administration should not be greater than that of a first-in-human phase I study as long as the protocol is developed with strict vigilance to detect early possible side effects from their potential interactions. Research on cancer therapy should go beyond the prevailing paradigm targeted therapy.


Assuntos
Antineoplásicos , Reposicionamento de Medicamentos , Terapia de Alvo Molecular , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Animais , Taxa de Sobrevida , Polifarmacologia , Desenvolvimento de Medicamentos
6.
Clin Transl Oncol ; 26(5): 1077-1088, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38064014

RESUMO

Drug repurposing of widely prescribed patent-off and cheap drugs may provide affordable drugs for cancer treatment. Nevertheless, many preclinical studies of cancer drug repurposing candidates use in vitro drug concentrations too high to have clinical relevance. Hence, preclinical studies must use clinically achievable drug concentrations. In this work, several FDA-approved cancer drugs are analyzed regarding the correlation between the drug inhibitory concentrations 50% (IC50) tested in cancer cell lines and their corresponding peak serum concentration (Cmax) and area under the curve (AUC) reported in clinical studies of these drugs. We found that for most targeted cancer drugs, the AUC and not the Cmax is closest to the IC50; therefore, we suggest that the initial testing of candidate drugs for repurposing could select the AUC pharmacokinetic parameter and not the Cmax as the translated drug concentration for in vitro testing. Nevertheless, this is a suggestion only as experimental evidence does not exist to prove this concept. Studies on this issue are required to advance in cancer drug repurposing.

7.
Curr Med Chem ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287286

RESUMO

BACKGROUND: Prostate cancer is the most frequently diagnosed malignancy in 112 countries and is the leading cause of death in eighteen. In addition to continuing research on prevention and early diagnosis, improving treatments and making them more affordable is imperative. In this sense, the therapeutic repurposing of low-cost and widely available drugs could reduce global mortality from this disease. The malignant metabolic phenotype is becoming increasingly important due to its therapeutic implications. Cancer generally is characterized by hyperactivation of glycolysis, glutaminolysis, and fatty acid synthesis. However, prostate cancer is particularly lipidic; it exhibits increased activity in the pathways for synthesizing fatty acids, cholesterol, and fatty acid oxidation (FAO). OBJECTIVE: Based on a literature review, we propose the PaSTe regimen (Pantoprazole, Simvastatin, Trimetazidine) as a metabolic therapy for prostate cancer. Pantoprazole and simvastatin inhibit the enzymes fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), therefore, blocking the synthesis of fatty acids and cholesterol, respectively. In contrast, trimetazidine inhibits the enzyme 3-b-Ketoacyl-CoA thiolase (3-KAT), an enzyme that catalyzes the oxidation of fatty acids (FAO). It is known that the pharmacological or genetic depletion of any of these enzymes has antitumor effects in prostatic cancer. RESULTS: Based on this information, we hypothesize that the PaSTe regimen will have increased antitumor effects and may impede the metabolic reprogramming shift. Existing knowledge shows that enzyme inhibition occurs at molar concentrations achieved in plasma at standard doses of these drugs. CONCLUSION: We conclude that this regimen deserves to be preclinically evaluated because of its clinical potential for the treatment of prostate cancer.

8.
Clin Drug Investig ; 43(4): 227-239, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36884210

RESUMO

Therapeutic repurposing emerged as an alternative to the traditional drug discovery and development model (DDD) of new molecular entities (NMEs). It was anticipated that by being faster, safer, and cheaper, the development would result in lower-cost drugs. As defined in this work, a repurposed cancer drug is one approved by a health regulatory authority against a non-cancer indication that then gains new approval for cancer. With this definition, only three drugs are repurposed for cancer: Bacillus Calmette-Guerin (BCG) vaccine (superficial bladder cancer, thalidomide [multiple myeloma], and propranolol [infantile hemangioma]). Each of these has a different history regarding price and affordability, and it is not yet possible to generalize the impact of drug repurposing on the final price to the patient. However, the development, including the price, does not differ significantly from an NME. For the end consumer, the product's price is unrelated to whether it followed the classical development or repurposing. Economic constraints for clinical development, and drug prescription biases for repurposing drugs, are barriers yet to be overcome. The affordability of cancer drugs is a complex issue that varies from country to country. Many alternatives for having affordable drugs have been put forward, however these measures have thus far failed and are, at best, palliative. There are no immediate solutions to the problem of access to cancer drugs. It is necessary to critically analyze the impact of the current drug development model and be creative in implementing new models that genuinely benefit society.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Reposicionamento de Medicamentos , Motivação , Antineoplásicos/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Vacina BCG/uso terapêutico
9.
Expert Opin Pharmacother ; 24(1): 73-81, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35653267

RESUMO

INTRODUCTION: From a therapeutic standpoint, invasive cervical cancer can be designated as early, locally advanced, and advanced stages. Systemic treatment remains the primary therapeutical modality for advanced cervical cancer patients who are not candidates for local curative treatments (surgery and radiation). AREAS COVERED: In this review, the author discusses recent clinical studies published in PubMed on the treatment of advanced cervical carcinoma. The author also provides his expert perspectives on the current state of play. EXPERT OPINION: Survival outcomes for advanced cervical cancer patients have been steadily improving since 1981, when single-agent cisplatin was adopted as the standard of care. In 2014, bevacizumab increased median overall survival (MOS) to 17 months when combined with standard chemotherapy (platinum-paclitaxel). In 2021, the checkpoint inhibitor (CPI) pembrolizumab, when used in the first line added to platinum-paclitaxel-bevacizumab, increased mOS to 24 months. Two other CPIs are in phase III trials as first-line treatments. As for second-line therapy, cemiplimab has shown increased survival compared to single-agent chemotherapy, and a phase III trial with tisotumab vedotin is currently ongoing. Nevertheless, there is still an unmet need for new more effective treatments and significant efforts are needed in the discovery of drugs for advanced cervical cancer beyond the current 'me-too' drugs.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/patologia , Bevacizumab/uso terapêutico , Platina/uso terapêutico , Terapia Combinada , Paclitaxel , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
10.
Front Oncol ; 12: 1028291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530977

RESUMO

Cervical cancer (CC) is tightly related to a low Human Development Index. Mexico is an upper-middle-income country with 126 million inhabitants, and its public health system aims to provide universal health coverage. Currently, employment-based social insurance covers approximately 60% of the population, and the scope of the remaining 40% is on course via the "IMSS-Bienestar" Institute. However, the annual government spending on health remains at 3% of the Gross Domestic Product, which is well below the 6% recommended by the Organization for Economic Cooperation and Development. CC is the second in incidence and mortality among women. Regarding primary prevention with the Human Papilloma Virus-vaccine, the current coverage for girls aged 9 to 14 years is only around 7%. Among secondary prevention with screening, the program is yet to cover the total number of women at risk; nevertheless, the age-standardized CC mortality rate has decreased from 12 per 100,000 women in 1979 to 5.7 per 100,000 women in 2020 due in part to increased screening coverage. Still, around two-thirds of patients present with locally advanced disease at diagnosis. Data from our country demonstrate that even socially disadvantaged CC patients achieve "standard" survival outcomes if treatment is granted. Nevertheless, there is a shortage in almost every aspect regarding CC treatment, including oncologists, chemotherapy units, medical physicists, radiation technicians, and both teletherapy and brachytherapy facilities. In conclusion, advances in the public health system in Mexico are urgently required to achieve CC control and reduce the mortality from this neoplasia that mainly targets socially disadvantaged women.

11.
Curr Cancer Drug Targets ; 22(9): 703-716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422220

RESUMO

BACKGROUND: Worldwide, gastric cancer is ranked the fifth malignancy in incidence and the third malignancy in mortality. Gastric cancer causes an altered metabolism that can be therapeutically exploited. OBJECTIVE: The objective of this study is to provide an overview of the significant metabolic alterations caused by gastric cancer and propose a blockade. METHODS: A comprehensive and up-to-date review of descriptive and experimental publications on the metabolic alterations caused by gastric cancer and their blockade. This is not a systematic review. RESULTS: Gastric cancer causes high rates of glycolysis and glutaminolysis. There are increased rates of de novo fatty acid synthesis and cholesterol synthesis. Moreover, gastric cancer causes high rates of lipid turnover via fatty acid ß-oxidation. Preclinical data indicate that the individual blockade of these pathways via enzyme targeting leads to antitumor effects in vitro and in vivo. Nevertheless, there is no data on the simultaneous blockade of these five pathways, which is critical as tumors show metabolic flexibility in response to the availability of nutrients. This means tumors may activate alternate routes when one or more are inhibited. We hypothesize there is a need to simultaneously block them to avoid or decrease the metabolic flexibility that may lead to treatment resistance. CONCLUSION: There is a need to explore the preclinical efficacy and feasibility of combined metabolic therapy targeting the pathways of glucose, glutamine, fatty acid synthesis, cholesterol synthesis, and fatty acid oxidation. This may have therapeutical implications because we have clinically available drugs that target these pathways in gastric cancer.


Assuntos
Neoplasias Gástricas , Colesterol , Ácidos Graxos/metabolismo , Glutamina/metabolismo , Glicólise , Humanos , Neoplasias Gástricas/tratamento farmacológico
12.
Curr Mol Pharmacol ; 15(6): 815-831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34620071

RESUMO

Cancer therapy advances have yet to impact global cancer mortality. One of the factors limiting mortality burden reduction is the high cost of cancer drugs. Cancer drug repurposing has already failed to meet expectations in terms of drug affordability. The three FDA-approved cancer drugs developed under repurposing: all-trans-retinoic acid, arsenic trioxide, and thalidomide do not differ in price from other drugs developed under the classical model. Though additional factors affect the whole process from inception to commercialization, the repurposing of widely used, commercially available, and cheap drugs may help. This work reviews the concept of the malignant metabolic phenotype and its exploitation by simultaneously blocking key metabolic processes altered in cancer. We elaborate on a combination called BAPST, which stands for the following drugs and pathways they inhibit: Benserazide (glycolysis), Apomorphine (glutaminolysis), Pantoprazole (Fatty-acid synthesis), Simvastatin (mevalonate pathway), and Trimetazidine (Fatty-acid oxidation). Their respective primary indications are: • Parkinson's disease (benserazide and apomorphine). • Peptic ulcer disease (pantoprazole). • Hypercholesterolemia (simvastatin). • Ischemic heart disease (trimetazidine). When used for their primary indication, the literature review on each of these drugs shows that they have a good safety profile and lack predicted pharmacokinetic interaction among them. Based on that, we propose that the BAPST regimen merits preclinical testing.


Assuntos
Combinação de Medicamentos , Neoplasias , Apomorfina , Benserazida , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pantoprazol , Sinvastatina , Trimetazidina
13.
Rev Invest Clin ; 73(6): 362-370, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34044429

RESUMO

BACKGROUND: Novel prognostic factors in patients with diffuse large B-cell lymphoma (DLBCL) are required in the era of Rituximab. OBJECTIVE: The objective of the study was to study the prognostic impact of exon-16 enhancer-of-zeste homolog-2 (EZH2) mutations in patients with DLBCL. METHODS: In a cohort of patients with DLBCL treated between 2015 and 2017, we analyzed the presence of EZH2 mutations and their association with clinical response (CR), relapse, progression-free survival (PFS), and overall survival (OS). RESULTS: A total of 198 patients were included; of them, 30 (15.2%) had mutations at codon 641, in exon 16 of EZH2. Response was achieved in 151 patients (76.3%), and 43 (21.7%) relapsed or progressed during follow-up. EZH2 mutations were associated with relapse/progression (risk ratio [RR] 1.18; 95% confidence interval [CI] 0.98-1.42; p = 0.031), while a trend for not achieving a complete response was observed (RR: 0.876; 95%CI 0.74-1.038; p = 0.071). Of note, Tyr641His and Tyr641Ser EZH2 mutations were associated with shorter PFS (hazard ratio 3.234; 95% CI 1.149-9.1; p = 0.026). CONCLUSION: The presence of EZH2 mutations was negatively associated with relapse/progression and showed a trend for lack of complete response. Further studies are needed to define better the prognostic significance of these mutations in Mexican-Mestizo DLBCL patients.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Linfoma Difuso de Grandes Células B , Recidiva Local de Neoplasia , Protocolos de Quimioterapia Combinada Antineoplásica , Estudos de Coortes , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Éxons , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Mutação , Prognóstico , Rituximab
14.
Cancer Biol Ther ; 22(4): 267-278, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33858306

RESUMO

Nowadays, extracellular DNA or circulating cell-free DNA is considered to be a molecule with clinical applications (diagnosis, prognosis, monitoring of treatment responses, or patient follow-up) in diverse pathologies, especially in cancer. Nevertheless, because of its molecular characteristics, it can have many other functions. This review focuses on the participation of extracellular DNA (exDNA) in fundamental processes such as cell signaling, coagulation, immunity, evolution through horizontal transfer of genetic information, and adaptive response to inflammatory processes. A deeper understanding of its role in each of these processes will allow development of better tools to monitor and control pathologies, as well as helping to generate new therapeutic options, beyond the applicability of DNA in liquid biopsy.


Assuntos
DNA , Neoplasias , DNA/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Prognóstico
15.
Ther Adv Hematol ; 12: 2040620721989579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796235

RESUMO

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is the most frequent non-Hodgkin lymphoma worldwide. The current standard of care is chemoimmunotherapy with an R-CHOP regimen. We aim to review the role of this regimen after two decades of being the standard of care. METHODS: A comprehensive literature review of DLBCL, including the epidemiology, trials defining R-CHOP as the standard of care, as well as dose intensification and dose reduction schemes. Additionally, we briefly review the development of rituximab biosimilars and the addition of targeted drugs to R-CHOP in clinical trials. DISCUSSION: R-CHOP cures approximately 70% of DLBCL patients. Dose-dense regimens do not show a benefit in response and increase toxicity. Dose reduction, particularly in elderly patients or with comorbidities, may be a treatment option. DLBCL constitutes a group of diseases that activate different biological pathways. Matching specific treatments to a defined genetic alteration is under development. Rituximab biosimilars have become available to a broader population, particularly in developing countries, where access to treatment is limited because of economic resources. CONCLUSION: DLBCL landscape is heterogeneous. R-CHOP immunochemotherapy has been a standard of care for two decades and cures approximately 70% of cases. Molecular characterization of patients is evolving and may have critical therapeutic implications.

16.
Sci Rep ; 11(1): 5222, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664364

RESUMO

The malignant energetic demands are satisfied through glycolysis, glutaminolysis and de novo synthesis of fatty acids, while the host curses with a state of catabolism and systemic inflammation. The concurrent inhibition of both, tumor anabolism and host catabolism, and their effect upon tumor growth and whole animal metabolism, have not been evaluated. We aimed to evaluate in colon cancer cells a combination of six agents directed to block the tumor anabolism (orlistat + lonidamine + DON) and the host catabolism (growth hormone + insulin + indomethacin). Treatment reduced cellular viability, clonogenic capacity and cell cycle progression. These effects were associated with decreased glycolysis and oxidative phosphorylation, leading to a quiescent energetic phenotype, and with an aberrant transcriptomic landscape showing dysregulation in multiple metabolic pathways. The in vivo evaluation revealed a significant tumor volume inhibition, without damage to normal tissues. The six-drug combination preserved lean tissue and decreased fat loss, while the energy expenditure got decreased. Finally, a reduction in gene expression associated with thermogenesis was observed. Our findings demonstrate that the simultaneous use of this six-drug combination has anticancer effects by inducing a quiescent energetic phenotype of cultured cancer cells. Besides, the treatment is well-tolerated in mice and reduces whole animal energetic expenditure and fat loss.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Daunorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Humanos , Indazóis/farmacologia , Indometacina/farmacologia , Insulina/farmacologia , Metabolismo/efeitos dos fármacos , Camundongos , Mitoxantrona/farmacologia , Orlistate/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Vincristina/farmacologia
17.
Pharmaceuticals (Basel) ; 14(1)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435260

RESUMO

The implementation of chemo- and bioinformatics tools is a crucial step in the design of structure-based drugs, enabling the identification of more specific and effective molecules against cancer without side effects. In this study, three new compounds were designed and synthesized with suitable absorption, distribution, metabolism, excretion and toxicity (ADME-tox) properties and high affinity for the G protein-coupled estrogen receptor (GPER) binding site by in silico methods, which correlated with the growth inhibitory activity tested in a cluster of cancer cell lines. Docking and molecular dynamics (MD) simulations accompanied by a molecular mechanics/generalized Born surface area (MMGBSA) approach yielded the binding modes and energetic features of the proposed compounds on GPER. These in silico studies showed that the compounds reached the GPER binding site, establishing interactions with a phenylalanine cluster (F206, F208 and F278) required for GPER molecular recognition of its agonist and antagonist ligands. Finally, a 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay showed growth inhibitory activity of compounds 4, 5 and 7 in three different cancer cell lines-MIA Paca-2, RCC4-VA and Hep G2-at micromolar concentrations. These new molecules with specific chemical modifications of the GPER pharmacophore open up the possibility of generating new compounds capable of reaching the GPER binding site with potential growth inhibitory activities against nonconventional GPER cell models.

18.
Methods Mol Biol ; 2174: 45-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32813244

RESUMO

Colon cancer is a highly anabolic entity with upregulation of glycolysis, glutaminolysis, and de novo synthesis of fatty acids, which also induces a hypercatabolic state in the patient. The blockade of either cancer anabolism or host catabolism has been previously proven to be a successful anticancer experimental treatment. However, it is still unclear whether the simultaneous blockade of both metabolic counterparts can limit malignant survival and the energetic consequences of such an approach. In this chapter, by using the CT26.WT murine colon adenocarcinoma cell line as a model of study, we provide a method to simultaneously perform a pharmacological blockade of tumor anabolism and host catabolism, as a feasible therapeutic approach to treat cancer, and to limit its energetic supply.


Assuntos
Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Ácidos Graxos/metabolismo , Glutamina/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Diazo-Oxo-Norleucina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Glicólise/efeitos dos fármacos , Hexoquinase/antagonistas & inibidores , Hexoquinase/metabolismo , Indazóis/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular/métodos , Orlistate/administração & dosagem , Smegmamorpha
19.
Curr Med Chem ; 28(11): 2085-2099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32867630

RESUMO

Complex common diseases are a significant burden for our societies and demand not only preventive measures but also more effective, safer, and more affordable treatments. The whole process of the current model of drug discovery and development implies a high investment by the pharmaceutical industry, which ultimately impact in high drug prices. In this sense, drug repurposing would help meet the needs of patients to access useful and novel treatments. Unlike the traditional approach, drug repurposing enters both the preclinical evaluation and clinical trials of the compound of interest faster, budgeting research and development costs, and limiting potential biosafety risks. The participation of government, society, and private investors is needed to secure the funds for experimental design and clinical development of repurposing candidates to have affordable, effective, and safe repurposed drugs. Moreover, extensive advertising of repurposing as a concept in the health community, could reduce prescribing bias when enough clinical evidence exists, which will support the employment of cheaper and more accessible repurposed compounds for common conditions.


Assuntos
Indústria Farmacêutica , Reposicionamento de Medicamentos , Descoberta de Drogas , Humanos
20.
Semin Cancer Biol ; 68: 123-131, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31877340

RESUMO

Drug repurposing for cancer therapy is currently a hot topic of research. Theoretically, in contrast to the known hurdles of developing new molecular entities, the approach of repurposing has several advantages. Mostly, it is said that it is faster, safer, easier, and cheaper. In the real world, however, there are only three repurposed drugs so far, that are listed in widely recognized cancer guidelines, but a large number of them are being studied. Among the many barriers to repurposing cancer drugs, economical-driven are the most important that difficult the clinical development of them. In this review, we provide an overview of the current status of drug repurposing for cancer therapy and the barriers that need to be overcome to realize the benefit of this approach. It means to have repositioned drugs for cancer therapy accepted as standard therapy for cancer indications at low cost.


Assuntos
Antineoplásicos/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA