Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 36(13): 2456-8, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21725443

RESUMO

We report on a Yb:YAG Innoslab laser amplifier system for generation of subpicsecond high energy pump pulses for optical parametric chirped pulse amplification (OPCPA) at high repetition rates. Pulse energies of up to 20 mJ (at 12.5 kHz) and repetition rates of up to 100 kHz were attained with pulse durations of 830 fs and average power in excess of 200 W. We further investigate the possibility to use subpicosecond pulses to derive a stable continuum in a YAG crystal for OPCPA seeding.

2.
Phys Rev Lett ; 101(25): 254801, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-19113716

RESUMO

A general theoretical approach based on the decomposition of statistical fields into a sum of independently propagating transverse modes was used for the analysis of the coherence properties of the new free-electron laser source FLASH operated at 13.7 nm wavelength. The analysis shows that several transverse modes are contributing to the total radiation field of FLASH. The results of theoretical calculations are compared with measurements using Young's double-slit experiment. The coherence lengths in the horizontal and in the vertical directions 20 m downstream from the source are estimated at 300 and 250 microm, respectively.

3.
Phys Rev Lett ; 95(12): 125701, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16197085

RESUMO

The melting dynamics of laser excited InSb have been studied with femtosecond x-ray diffraction. These measurements observe the delayed onset of diffusive atomic motion, signaling the appearance of liquidlike dynamics. They also demonstrate that the root-mean-squared displacement in the [111] direction increases faster than in the [110] direction after the first 500 fs. This structural anisotropy indicates that the initially generated fluid differs significantly from the equilibrium liquid.

4.
Science ; 308(5720): 392-5, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15831753

RESUMO

The motion of atoms on interatomic potential energy surfaces is fundamental to the dynamics of liquids and solids. An accelerator-based source of femtosecond x-ray pulses allowed us to follow directly atomic displacements on an optically modified energy landscape, leading eventually to the transition from crystalline solid to disordered liquid. We show that, to first order in time, the dynamics are inertial, and we place constraints on the shape and curvature of the transition-state potential energy surface. Our measurements point toward analogies between this nonequilibrium phase transition and the short-time dynamics intrinsic to equilibrium liquids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...