Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1146418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970690

RESUMO

Campylobacter jejuni colonizes hosts by interacting with Blood Group Antigens (BgAgs) on the surface of gastrointestinal epithelia. Genetic variations in BgAg expression affects host susceptibility to C. jejuni. Here, we show that the essential major outer membrane protein (MOMP) of C. jejuni NCTC11168 binds to the Lewis b (Leb) antigen on the gastrointestinal epithelia of host tissues and this interaction can be competitively inhibited by ferric quinate (QPLEX), a ferric chelate structurally similar to bacterial siderophores. We provide evidence that QPLEX competitively inhibits the MOMP-Leb interaction. Furthermore, we demonstrate that QPLEX can be used as a feed additive in broiler farming to significantly reduce C. jejuni colonization. Our results indicate that QPLEX can be a viable alternative to the preventative use of antibiotics in broiler farming to combat C. jejuni infections.

2.
Vet Parasitol Reg Stud Reports ; 30: 100711, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35431069

RESUMO

Cysticercosis caused by the larval stages of Taenia hydatigena has a significant global impact on livestock production, particularly of goats and sheep. Despite this, global data on prevalence and genetic variance of this parasite are still scarce. In Ghana, as in most African countries, numerous anecdotal observations agree that it is widespread and frequent. To obtain baseline data, we screened 251 goats and 248 sheep in northern Ghana (Upper East Region) for T. hydatigena metacestode and molecularly characterized the isolates using the mtDNA cox1 gene sequence. Prevalence was 58.57% in goats and 60.48% in sheep, confirming the abundance of this parasite in the region. Gene sequences revealed high diversity (π 0.00346, hd 0.809) and significant negative Tajima D and Fu's Fs values, a characteristic of a population experiencing an expansion after a recent bottleneck. This is the first account of the genetic structure of T. hydatigena in Ghana, intended as a basis for subsequent studies in the region.


Assuntos
Doenças das Cabras , Parasitos , Doenças dos Ovinos , Taenia , Animais , Gana/epidemiologia , Doenças das Cabras/epidemiologia , Doenças das Cabras/parasitologia , Cabras/parasitologia , Gado , Filogenia , Dados Preliminares , Prevalência , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/parasitologia , Taenia/genética
3.
J Ovarian Res ; 14(1): 70, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020688

RESUMO

Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mainly attacks the respiratory system and is characterized by pneumonia, cytokine storm, coagulation disorders and severe immune downregulation. Although public health experts predicted worst outcomes in Africa, the incidence, hospitalization and mortality rates have been lower in Africa compared to other continents. Interestingly, lower incidence and mortality rates have been observed in women from Africa compared to their cohorts from other continents. Also, in the US non-Hispanic Black females have lower COVID-19 and death rates compared to their white counterparts. It's unclear why this significant difference exists; however, the ovarian function, genetics and immunological statuses could play a major role. Women of African descent have elevated levels of estrogen compared with Caucasians hence we anticipate that estrogen might offer some protection against the SARS-CoV-2 infections. The racial differences in lifestyle, age and inaccessibility to contraceptive usage might also play a role. Here, we provide insight on how the high levels of estrogen in African women might contribute to the lower cases and fatalities in Africa. Specifically, estrogen might offer protection against COVID-19 by suppressing hyper-production of cytokines, promoting anti-inflammatory cytokines, stimulating antibody production and suppressing endoplasmic reticulum (ER) stress. This will as well provide useful information on how future pandemics could be managed using Africa as a case study.


Assuntos
Teste para COVID-19/tendências , COVID-19/epidemiologia , COVID-19/etiologia , África/epidemiologia , Negro ou Afro-Americano , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/mortalidade , Teste para COVID-19/métodos , Síndrome da Liberação de Citocina/etiologia , Estresse do Retículo Endoplasmático , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Incidência , Masculino , Mortalidade , Fatores Raciais , Fatores Sexuais , Tratamento Farmacológico da COVID-19
4.
Microb Pathog ; 124: 70-75, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30081080

RESUMO

Neisseria meningitidis is normally a human nasopharyngeal commensal but is also capable of causing life-threatening sepsis and meningitis. N. meningitidis secretes several virulence-associated proteins including Neisserial autotransporter lipoprotein (NalP), an immunogenic, type Va autotransporter harboring an S8-family serine endopeptidase domain. NalP has been previously characterized as a cell-surface maturation protease which processes other virulence-associated meningococcal surface proteins, and as a factor contributing to the survival of meningococci in human serum due to its ability to cleave complement factor C3. Here, recombinant NalP (rNalP) fragments were purified and used to investigate the interaction of NalP with host cells. Flow cytometry and confocal microscopy demonstrated binding and uptake of rNalP into different human cell types. High-resolution microscopy confirmed that internalized rNalP predominantly localized to the perinuclear region of cells. Abolition of rNalP protease activity using site-directed mutagenesis did not influence uptake or sub-cellular localization, but inactive rNalP (rNalPS426A) was unable to induce an increase in human brain microvascular endothelial cell metabolic activity provoked by proteolytically-active rNalP. Our data suggests a more complex and multifaceted role for NalP in meningococcal pathogenesis than was previously understood which includes novel intra-host cell functions.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Serina Endopeptidases/metabolismo , Células Cultivadas , Análise Mutacional de DNA , Citometria de Fluxo , Humanos , Proteínas de Membrana Transportadoras/genética , Microscopia Confocal , Mutagênese Sítio-Dirigida , Transporte Proteico , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética
5.
Cell Microbiol ; 17(7): 1008-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25600171

RESUMO

Neisseria meningitidis, a major cause of bacterial meningitis and septicaemia, secretes multiple virulence factors, including the adhesion and penetration protein (App) and meningococcal serine protease A (MspA). Both are conserved, immunogenic, type Va autotransporters harbouring S6-family serine endopeptidase domains. Previous work suggested that both could mediate adherence to human cells, but their precise contribution to meningococcal pathogenesis was unclear. Here, we confirm that App and MspA are in vivo virulence factors since human CD46-expressing transgenic mice infected with meningococcal mutants lacking App, MspA or both had improved survival rates compared with mice infected with wild type. Confocal imaging showed that App and MspA were internalized by human cells and trafficked to the nucleus. Cross-linking and enzyme-linked immuno assay (ELISA) confirmed that mannose receptor (MR), transferrin receptor 1 (TfR1) and histones interact with MspA and App. Dendritic cell (DC) uptake could be blocked using mannan and transferrin, the specific physiological ligands for MR and TfR1, whereas in vitro clipping assays confirmed the ability of both proteins to proteolytically cleave the core histone H3. Finally, we show that App and MspA induce a dose-dependent increase in DC death via caspase-dependent apoptosis. Our data provide novel insights into the roles of App and MspA in meningococcal infection.


Assuntos
Apoptose , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Histonas/metabolismo , Interações Hospedeiro-Patógeno , Neisseria meningitidis/patogenicidade , Sistemas de Secreção Tipo V/metabolismo , Fatores de Virulência/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sobrevivência Celular , Células Cultivadas , Células Dendríticas/microbiologia , Células Dendríticas/fisiologia , Modelos Animais de Doenças , Humanos , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/patologia , Camundongos Transgênicos , Proteólise , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...