Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2149: 351-364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617945

RESUMO

Plant and algal cell walls are diverse composites of complex polysaccharides. Molecular probes such as monoclonal antibodies (MABs) and carbohydrate-binding modules (CBMs) are important tools to detect and dissect cell wall structures in these materials. We provide an account of methods that can be used to detect cell wall polysaccharide structures (epitopes) in plant and marine algal materials and also describe treatments that can provide information on the masking of polysaccharides that may prevent detection. These masking phenomena may indicate potential interactions between sets of cell wall polysaccharides and methods to uncover them are an important aspect of cell wall immunocytochemistry.


Assuntos
Anticorpos Monoclonais/metabolismo , Organismos Aquáticos/química , Arabidopsis/química , Parede Celular/química , Polissacarídeos/análise , Parede Celular/ultraestrutura , Laminaria/química , Proteínas Recombinantes/metabolismo , Resinas Vegetais/química , Fixação de Tecidos , Ceras/química
2.
Front Microbiol ; 9: 2879, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564203

RESUMO

Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. The cosmopolitan diatoms Thalassiosira and Chaetoceros often dominate phytoplankton communities in marine systems. Past studies of diatom-bacterial associations have employed community-level methods and culture-based or natural diatom populations. Although bacterial assemblages attached to individual diatoms represents tight associations little is known on their makeup or interactions. Here, we examined the epibiotic bacteria of 436 Thalassiosira and 329 Chaetoceros single cells isolated from natural samples and collection cultures, regarded here as short- and long-term associations, respectively. Epibiotic microbiota of single diatom hosts was analyzed by cultivation and by cloning-sequencing of 16S rRNA genes obtained from whole-genome amplification products. The prevalence of epibiotic bacteria was higher in cultures and dependent of the host species. Culture approaches demonstrated that both diatoms carry distinct bacterial communities in short- and long-term associations. Bacterial epibonts, commonly associated with phytoplankton, were repeatedly isolated from cells of diatom collection cultures but were not recovered from environmental cells. Our results suggest that in controlled laboratory culture conditions bacterial-diatom and bacterial-bacterial interactions select for a simplified, but specific, epibiotic microbiota shaped and adapted for long-term associations.

3.
Sci Rep ; 8(1): 2500, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410423

RESUMO

Marine algae are one of the largest sources of carbon on the planet. The microbial degradation of algal polysaccharides to their constitutive sugars is a cornerstone in the global carbon cycle in oceans. Marine polysaccharides are highly complex and heterogeneous, and poorly understood. This is also true for marine microbial proteins that specifically degrade these substrates and when characterized, they are frequently ascribed to new protein families. Marine (meta)genomic datasets contain large numbers of genes with functions putatively assigned to carbohydrate processing, but for which empirical biochemical activity is lacking. There is a paucity of knowledge on both sides of this protein/carbohydrate relationship. Addressing this 'double blind' problem requires high throughput strategies that allow large scale screening of protein activities, and polysaccharide occurrence. Glycan microarrays, in particular the Comprehensive Microarray Polymer Profiling (CoMPP) method, are powerful in screening large collections of glycans and we described the integration of this technology to a medium throughput protein expression system focused on marine genes. This methodology (Double Blind CoMPP or DB-CoMPP) enables us to characterize novel polysaccharide-binding proteins and to relate their ligands to algal clades. This data further indicate the potential of the DB-CoMPP technique to accommodate samples of all biological sources.


Assuntos
Análise em Microsséries/métodos , Plantas/química , Polissacarídeos/análise , Receptores de Superfície Celular/análise , Organismos Aquáticos/química , Clorófitas/química , Escherichia coli , Glicômica/métodos , Phaeophyceae/química , Rodófitas/química
4.
Sci Rep ; 7(1): 2880, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28588313

RESUMO

Brown algae are photosynthetic multicellular marine organisms. They belong to the phylum of Stramenopiles, which are not closely related to land plants and green algae. Brown algae share common evolutionary features with other photosynthetic and multicellular organisms, including a carbohydrate-rich cell-wall. Brown algal cell walls are composed predominantly of the polyanionic polysaccharides alginates and fucose-containing sulfated polysaccharides. These polymers are prevalent over neutral and crystalline components, which are believed to be mostly, if not exclusively, cellulose. In an attempt to better understand brown algal cell walls, we performed an extensive glycan array analysis of a wide range of brown algal species. Here we provide the first demonstration that mixed-linkage (1 → 3), (1 → 4)-ß-D-glucan (MLG) is common in brown algal cell walls. Ultra-Performance Liquid Chromatography analyses indicate that MLG in brown algae solely consists of trisaccharide units of contiguous (1 → 4)-ß-linked glucose residues joined by (1 → 3)-ß-linkages. This regular conformation may allow long stretches of the molecule to align and to form well-structured microfibrils. At the tissue level, immunofluorescence studies indicate that MLG epitopes in brown algae are unmasked by a pre-treatment with alginate lyases to remove alginates. These findings are further discussed in terms of the origin and evolution of MLG in the Stramenopile lineage.


Assuntos
Alginatos/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Glucanos/química , Glucanos/metabolismo , Phaeophyceae/metabolismo , Cromatografia Líquida de Alta Pressão , Imunofluorescência , Imuno-Histoquímica , Especificidade de Órgãos , Phaeophyceae/classificação , Phaeophyceae/genética , Solubilidade
5.
Environ Microbiol ; 19(6): 2164-2181, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28205313

RESUMO

Comprehension of the degradation of macroalgal polysaccharides suffers from the lack of genetic tools for model marine bacteria, despite their importance for coastal ecosystem functions. We developed such tools for Zobellia galactanivorans, an algae-associated flavobacterium that digests many polysaccharides, including alginate. These tools were used to investigate the biological role of AlyA1, the only Z. galactanivorans alginate lyase known to be secreted in soluble form and to have a recognizable carbohydrate-binding domain. A deletion mutant, ΔalyA1, grew as well as the wild type on soluble alginate but was deficient in soluble secreted alginate lyase activity and in digestion of and growth on alginate gels and algal tissues. Thus, AlyA1 appears to be essential for optimal attack of alginate in intact cell walls. alyA1 appears to have been recently acquired via horizontal transfer from marine Actinobacteria, conferring an adaptive advantage that might benefit other algae-associated bacteria by exposing new substrate niches. The genetic tools described here function in diverse members of the phylum Bacteroidetes and should facilitate analyses of polysaccharide degradation systems and many other processes in these common but understudied bacteria.


Assuntos
Alginatos/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Phaeophyceae/microbiologia , Polissacarídeo-Liases/genética , Biomassa , Parede Celular/metabolismo , Flavobacteriaceae/enzimologia , Flavobacteriaceae/crescimento & desenvolvimento , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Polissacarídeo-Liases/metabolismo , Deleção de Sequência/genética
6.
J Exp Bot ; 67(21): 6089-6100, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27811078

RESUMO

Zygotes from Fucus species have been used extensively to study cell polarization and rhizoid outgrowth, and in this model system cell wall deposition aligns with the establishment of polarity. Monoclonal antibodies are essential tools for the in situ analysis of cell wall glycans, and here we report the characteristics of six monoclonal antibodies to alginates (BAM6-BAM11). The use of these, in conjunction with monoclonal antibodies to brown algal sulfated fucans, has enabled the study of the developmental dynamics of the Fucus zygote cell walls. Young zygotes are spherical and all alginate epitopes are deposited uniformly following cellulose deposition. At germination, sulfated fucans are secreted in the growing rhizoid wall. The redistribution of cell wall epitopes was investigated during treatments that cause reorientation of the growth axis (change in light direction) or disrupt rhizoid development (arabinogalactan-protein-reactive Yariv reagent). Alginate modeling was drastically impaired in the latter, and both treatments cause a redistribution of highly sulfated fucan epitopes. The dynamics of cell wall glycans in this system have been visualized in situ for the first time, leading to an enhanced understanding of the early developmental mechanisms of Fucus species. These sets of monoclonal antibodies significantly extend the available molecular tools for brown algal cell wall studies.


Assuntos
Parede Celular/metabolismo , Fucus/metabolismo , Sementes/metabolismo , Anticorpos Monoclonais/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Fucus/crescimento & desenvolvimento , Germinação/fisiologia , Sementes/crescimento & desenvolvimento
7.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 209-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25664732

RESUMO

The family 117 glycoside hydrolase (GH117) enzymes have exo-α-1,3-(3,6-anhydro)-L-galactosidase activity, removing terminal nonreducing α-1,3-linked 3,6-anhydro-L-galactose residues from their red algal neoagarose substrate. These enzymes have previously been phylogenetically divided into clades, and only the clade A enzymes have been experimentally studied to date. The investigation of two GH117 enzymes, Zg3615 and Zg3597, produced by the marine bacterium Zobellia galactanivorans reveals structural, biochemical and further phylogenetic diversity between clades. A product complex with the unusual ß-3,6-anhydro-L-galactose residue sheds light on the inverting catalytic mechanism of the GH117 enzymes as well as the structure of this unique sugar produced by hydrolysis of the agarophyte red algal cell wall.


Assuntos
Flavobacteriaceae/enzimologia , Glicosídeo Hidrolases/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Evolução Molecular , Flavobacteriaceae/química , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Galactose/análogos & derivados , Galactose/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Metais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Multimerização Proteica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...