Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Bioenerg ; 1865(1): 149004, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699505

RESUMO

The plant light-harvesting pigment-protein complex LHCII is the major antenna sub-unit of PSII and is generally (though not universally) accepted to play a role in photoprotective energy dissipation under high light conditions, a process known Non-Photochemical Quenching (NPQ). The underlying mechanisms of energy trapping and dissipation within LHCII are still debated. Various models have been proposed for the underlying molecular detail of NPQ, but they are often based on different interpretations of very similar transient absorption measurements of isolated complexes. Here we present a simulated measurement of the fluorescence decay kinetics of quenched LHCII aggregates to determine whether this relatively simple measurement can discriminate between different potential NPQ mechanisms. We simulate not just the underlying physics (excitation, energy migration, quenching and singlet-singlet annihilation) but also the signal detection and typical experimental data analysis. Comparing this to a selection of published fluorescence decay kinetics we find that: (1) Different proposed quenching mechanisms produce noticeably different fluorescence kinetics even at low (annihilation free) excitation density, though the degree of difference is dependent on pulse width. (2) Measured decay kinetics are consistent with most LHCII trimers becoming relatively slow excitation quenchers. A small sub-population of very fast quenchers produces kinetics which do not resemble any observed measurement. (3) It is necessary to consider at least two distinct quenching mechanisms in order to accurately reproduce experimental kinetics, supporting the idea that NPQ is not a simple binary switch.


Assuntos
Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Tilacoides/metabolismo , Física
2.
J Phys Chem B ; 126(22): 3985-3994, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35609122

RESUMO

Carotenoids are an integral part of natural photosynthetic complexes, with tasks ranging from light harvesting to photoprotection. Their underlying energy deactivation network of optically dark and bright excited states is extremely efficient: after excitation of light with up to 2.5 eV of photon energy, the system relaxes back to ground state on a time scale of a few picoseconds. In this article, we summarize how a model based on the vibrational energy relaxation approach (VERA) explains the main characteristics of relaxation dynamics after one-photon excitation with special emphasis on the so-called S* state. Lineshapes after two-photon excitation are beyond the current model of VERA. We outline this future line of research in our article. In terms of experimental method development, we discuss which techniques are needed to better describe energy dissipation effects in carotenoids and within the first solvation shell.


Assuntos
Carotenoides , Complexo de Proteínas do Centro de Reação Fotossintética , Complexos de Proteínas Captadores de Luz , Fótons , Vibração
3.
Phys Chem Chem Phys ; 23(35): 19511-19524, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524278

RESUMO

Light-Harvesting Complex II (LHCII) is a membrane protein found in plant chloroplasts that has the crucial role of absorbing solar energy and subsequently performing excitation energy transfer to the reaction centre subunits of Photosystem II. LHCII provides strong absorption of blue and red light, however, it has minimal absorption in the green spectral region where solar irradiance is maximal. In a recent proof-of-principle study, we enhanced the absorption in this spectral range by developing a biohybrid system where LHCII proteins together with lipid-linked Texas Red (TR) chromophores were assembled into lipid membrane vesicles. The utility of these systems was limited by significant LHCII quenching due to protein-protein interactions and heterogeneous lipid structures. Here, we organise TR and LHCII into a lipid nanodisc, which provides a homogeneous, well-controlled platform to study the interactions between TR molecules and single LHCII complexes. Fluorescence spectroscopy determined that TR-to-LHCII energy transfer has an efficiency of at least 60%, resulting in a 262% enhancement of LHCII fluorescence in the 525-625 nm range, two-fold greater than in the previous system. Ultrafast transient absorption spectroscopy revealed two time constants of 3.7 and 128 ps for TR-to-LHCII energy transfer. Structural modelling and theoretical calculations indicate that these timescales correspond to TR-lipids that are loosely- or tightly-associated with the protein, respectively, with estimated TR-to-LHCII separations of ∼3.5 nm and ∼1 nm. Overall, we demonstrate that a nanodisc-based biohybrid system provides an idealised platform to explore the photophysical interactions between extrinsic chromophores and membrane proteins with potential applications in understanding more complex natural or artificial photosynthetic systems.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Plantas/metabolismo , Clorofila/química , Cloroplastos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Complexos de Proteínas Captadores de Luz/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Xantenos/química
4.
Front Plant Sci ; 12: 797373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095968

RESUMO

Higher plants defend themselves from bursts of intense light via the mechanism of Non-Photochemical Quenching (NPQ). It involves the Photosystem II (PSII) antenna protein (LHCII) adopting a conformation that favors excitation quenching. In recent years several structural models have suggested that quenching proceeds via energy transfer to the optically forbidden and short-lived S 1 states of a carotenoid. It was proposed that this pathway was controlled by subtle changes in the relative orientation of a small number of pigments. However, quantum chemical calculations of S 1 properties are not trivial and therefore its energy, oscillator strength and lifetime are treated as rather loose parameters. Moreover, the models were based either on a single LHCII crystal structure or Molecular Dynamics (MD) trajectories about a single minimum. Here we try and address these limitations by parameterizing the vibronic structure and relaxation dynamics of lutein in terms of observable quantities, namely its linear absorption (LA), transient absorption (TA) and two-photon excitation (TPE) spectra. We also analyze a number of minima taken from an exhaustive meta-dynamical search of the LHCII free energy surface. We show that trivial, Coulomb-mediated energy transfer to S 1 is an unlikely quenching mechanism, with pigment movements insufficiently pronounced to switch the system between quenched and unquenched states. Modulation of S 1 energy level as a quenching switch is similarly unlikely. Moreover, the quenching predicted by previous models is possibly an artifact of quantum chemical over-estimation of S 1 oscillator strength and the real mechanism likely involves short-range interaction and/or non-trivial inter-molecular states.

5.
iScience ; 23(9): 101430, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32818906

RESUMO

The major light-harvesting complex of photosystem II (LHCII) is the main contributor to sunlight energy harvesting in plants. The flexible design of LHCII underlies a photoprotective mechanism whereby this complex switches to a dissipative state in response to high light stress, allowing the rapid dissipation of excess excitation energy (non-photochemical quenching, NPQ). In this work, we locked single LHCII trimers in a quenched conformation after immobilization of the complexes in polyacrylamide gels to impede protein interactions. A comparison of their pigment excited-state dynamics with quenched LHCII aggregates in buffer revealed the presence of a new spectral band at 515 nm arising after chlorophyll excitation. This is suggested to be the signature of a carotenoid excited state, linked to the quenching of chlorophyll singlet excited states. Our data highlight the marked sensitivity of pigment excited-state dynamics in LHCII to structural changes induced by the environment.

6.
J Biol Chem ; 295(43): 14537-14545, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32561642

RESUMO

An intriguing molecular architecture called the "semi-crystalline photosystem II (PSII) array" has been observed in the thylakoid membranes in vascular plants. It is an array of PSII-light-harvesting complex II (LHCII) supercomplexes that only appears in low light, but its functional role has not been clarified. Here, we identified PSII-LHCII supercomplexes in their monomeric and multimeric forms in low light-acclimated spinach leaves and prepared them using sucrose-density gradient ultracentrifugation in the presence of amphipol A8-35. When the leaves were acclimated to high light, only the monomeric forms were present, suggesting that the multimeric forms represent a structural adaptation to low light and that disaggregation of the PSII-LHCII supercomplex represents an adaptation to high light. Single-particle EM revealed that the multimeric PSII-LHCII supercomplexes are composed of two ("megacomplex") or three ("arraycomplex") units of PSII-LHCII supercomplexes, which likely constitute a fraction of the semi-crystalline PSII array. Further characterization with fluorescence analysis revealed that multimeric forms have a higher light-harvesting capability but a lower thermal dissipation capability than the monomeric form. These findings suggest that the configurational conversion of PSII-LHCII supercomplexes may serve as a structural basis for acclimation of plants to environmental light.


Assuntos
Chlamydomonas reinhardtii/química , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Folhas de Planta/química , Aclimatação , Chlamydomonas reinhardtii/fisiologia , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/ultraestrutura , Folhas de Planta/fisiologia , Conformação Proteica , Multimerização Proteica , Tilacoides/química , Tilacoides/metabolismo
7.
Science ; 368(6498): 1427-1428, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32587007
8.
Photosynth Res ; 144(3): 301-315, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32266612

RESUMO

Plants possess an essential ability to rapidly down-regulate light-harvesting in response to high light. This photoprotective process involves the formation of energy-quenching interactions between the chlorophyll and carotenoid pigments within the antenna of Photosystem II (PSII). The nature of these interactions is currently debated, with, among others, 'incoherent' or 'coherent' quenching models (or a combination of the two) suggested by a range of time-resolved spectroscopic measurements. In 'incoherent quenching', energy is transferred from a chlorophyll to a carotenoid and is dissipated due to the intrinsically short excitation lifetime of the latter. 'Coherent quenching' would arise from the quantum mechanical mixing of chlorophyll and carotenoid excited state properties, leading to a reduction in chlorophyll excitation lifetime. The key parameters are the energy gap, [Formula: see text] and the resonance coupling, J, between the two excited states. Coherent quenching will be the dominant process when [Formula: see text] i.e., when the two molecules are resonant, while the quenching will be largely incoherent when [Formula: see text] One would expect quenching to be energetically unfavorable for [Formula: see text] The actual dynamics of quenching lie somewhere between these limiting regimes and have non-trivial dependencies of both J and [Formula: see text] Using the Hierarchical Equation of Motion (HEOM) formalism we present a detailed theoretical examination of these excitation dynamics and their dependence on slow variations in J and [Formula: see text] We first consider an isolated chlorophyll-carotenoid dimer before embedding it within a PSII antenna sub-unit (LHCII). We show that neither energy transfer, nor the mixing of excited state lifetimes represent unique or necessary pathways for quenching and in fact discussing them as distinct quenching mechanisms is misleading. However, we do show that quenching cannot be switched 'on' and 'off' by fine tuning of [Formula: see text] around the resonance point, [Formula: see text] Due to the large reorganization energy of the carotenoid excited state, we find that the presence (or absence) of coherent interactions have almost no impact of the dynamics of quenching. Counter-intuitively significant quenching is present even when the carotenoid excited state lies above that of the chlorophyll. We also show that, above a rather small threshold value of [Formula: see text]quenching becomes less and less sensitive to J (since in the window [Formula: see text] the overall lifetime is independent of it). The requirement for quenching appear to be only that [Formula: see text] Although the coherent/incoherent character of the quenching can vary, the overall kinetics are likely robust with respect to fluctuations in J and [Formula: see text] This may be the basis for previous observations of NPQ with both coherent and incoherent features.


Assuntos
Carotenoides/química , Clorofila/química , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/química , Plantas/química , Carotenoides/efeitos da radiação , Clorofila/efeitos da radiação , Cinética , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Modelos Teóricos , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Fenômenos Fisiológicos Vegetais , Plantas/efeitos da radiação
9.
Phys Chem Chem Phys ; 21(41): 23187-23197, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31612872

RESUMO

Carotenoids in photosynthetic proteins carry out the dual function of harvesting light and defending against photo-damage by quenching excess energy. The latter involves the low-lying, dark, excited state labelled S1. Here "dark" means optically-forbidden, a property that is often attributed to molecular symmetry, which leads to speculation that its optical properties may be strongly-perturbed by structural distortions. This has been both explicitly and implicitly proposed as an important feature of photo-protective energy quenching. Here we present a theoretical analysis of the relationship between structural distortions and S1 optical properties. We outline how S1 is dark not because of overall geometric symmetry but because of a topological symmetry related to bond length alternation in the conjugated backbone. Taking the carotenoid echinenone as an example and using a combination of molecular dynamics, quantum chemistry, and the theory of spectral lineshapes, we show that distortions that break this symmetry are extremely stiff. They are therefore absent in solution and only marginally present in even a very highly-distorted protein binding pocket such as in the Orange Carotenoid Protein (OCP). S1 remains resolutely optically-forbidden despite any breaking of bulk molecular symmetry by the protein environment. However, rotations of partially conjugated end-rings can result in fine tuning of the S1 transition density which may exert some influence on interactions with neighbouring chromophores.


Assuntos
Carotenoides/química , Fenômenos Ópticos , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
10.
J Phys Chem B ; 123(45): 9609-9615, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31633352

RESUMO

The allosteric regulation of protein function proves important in many life-sustaining processes. In plant photosynthesis, LHCII, the major antenna complex of Photosystem II, employs a delicate switch between light harvesting and photoprotective modes. The switch is triggered by an enlarged pH gradient (ΔpH) across the thylakoid membranes. Using molecular simulations and quantum calculations, we show that ΔpH can tune the light-harvesting potential of the antenna via allosteric regulation of the excitonic coupling in chlorophyll-carotenoid pairs. To this end, we propose how the LHCII excited state lifetime is coupled to the environmental conditions. In line with experimental findings, our theoretical model provides crucial evidence toward the elucidation of the photoprotective switch of higher plants at an all-atom resolution.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Regulação Alostérica , Carotenoides/química , Clorofila A/química , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Teoria Quântica , Spinacia oleracea/química
11.
Chem Sci ; 10(18): 4792-4804, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31183032

RESUMO

In some molecular systems, such as nucleobases, polyenes or the active ingredients of sunscreens, substantial amounts of photo-excitation energy are dissipated on a sub-picosecond time scale, raising questions such as: where does this energy go or among which degrees of freedom it is being distributed at such early times? Here we use transient absorption spectroscopy to track excitation energy dispersing from the optically accessible vibronic subsystem into the remaining vibrational subsystem of the solute and solvent. Monitoring the flow of energy during vibrational redistribution enables quantification of local molecular heating. Subsequent heat dissipation away from the solute molecule is characterized by classical thermodynamics and molecular dynamics simulations. Hence, we present a holistic approach that tracks the internal temperature and vibronic distribution from the act of photo-excitation to the restoration of the global equilibrium. Within this framework internal vibrational redistribution and vibrational cooling are emergent phenomena. We demonstrate the validity of the framework by examining a highly controversial example, carotenoids. We show that correctly accounting for the local temperature unambiguously explains their energetically and temporally congested spectral dynamics without the ad hoc postulation of additional 'dark' states. An immediate further application of this approach would be to monitor the excitation and thermal dynamics of pigment-protein systems.

12.
Biochim Biophys Acta Bioenerg ; 1859(7): 471-481, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29625089

RESUMO

The bioenergetics of light-harvesting by photosynthetic antenna proteins in higher plants is well understood. However, investigation into the regulatory non-photochemical quenching (NPQ) mechanism, which dissipates excess energy in high light, has led to several conflicting models. It is generally accepted that the major photosystem II antenna protein, LHCII, is the site of NPQ, although the minor antenna complexes (CP24/26/29) are also proposed as alternative/additional NPQ sites. LHCII crystals were shown to exhibit the short excitation lifetime and several spectral signatures of the quenched state. Subsequent structure-based models showed that this quenching could be explained by slow energy trapping by the carotenoids, in line with one of the proposed models. Using Fluorescence Lifetime Imaging Microscopy (FLIM) we show that the crystal structure of CP29 corresponds to a strongly quenched conformation. Using a structure-based theoretical model we show that this quenching may be explained by the same slow, carotenoid-mediated quenching mechanism present in LHCII crystals.


Assuntos
Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Cristalização , Transferência de Energia , Fluorescência , Simulação de Dinâmica Molecular
13.
Sci Rep ; 7(1): 13956, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29066753

RESUMO

Photosynthetic antenna proteins can be thought of as "programmed solvents", which bind pigments at specific mutual orientations, thus tuning the overall energetic landscape and ensuring highly efficient light-harvesting. While positioning of chlorophyll cofactors is well understood and rationalized by the principle of an "energy funnel", the carotenoids still pose many open questions. Particularly, their short excited state lifetime (<25 ps) renders them potential energy sinks able to compete with the reaction centers and drastically undermine light-harvesting efficiency. Exploration of the orientational phase-space revealed that the placement of central carotenoids minimizes their interaction with the nearest chlorophylls in the plant antenna complexes LHCII, CP26, CP29 and LHCI. At the same time we show that this interaction is highly sensitive to structural perturbations, which has a profound effect on the overall lifetime of the complex. This links the protein dynamics to the light-harvesting regulation in plants by the carotenoids.


Assuntos
Carotenoides/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Simulação de Dinâmica Molecular , Plantas/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Plantas/enzimologia , Conformação Proteica
14.
Phys Chem Chem Phys ; 19(34): 22957-22968, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28813042

RESUMO

Plant light-harvesting is regulated by the Non-Photochemical Quenching (NPQ) mechanism involving the reversible formation of excitation quenching sites in the Photosystem II (PSII) antenna in response to high light. While the major antenna complex, LHCII, is known to be a site of NPQ, the precise mechanism of excitation quenching is not clearly understood. A preliminary model of the quenched crystal structure of LHCII implied that quenching arises from slow energy capture by Car pigments. It predicted a thoroughly quenched system but offered little insight into the defining aspects of this quenching. In this work, we present a thorough theoretical investigation of this quenching, addressing the factors defining the quenching pathway and possible mechanism for its (de)activation. We show that quenching in LHCII crystals is the result of slow energy transfer from chlorophyll to the centrally-bound lutein Cars, predominantly the Lut620 associated with the chlorophyll 'terminal emitter', one of the proposed in vivo pathways. We show that this quenching is rather independent of the particular species of Car and excitation 'site' energy. The defining parameter is the resonant coupling between the pigment co-factors. Lastly, we show that these interactions must be severely suppressed for a light-harvesting state to be recovered.

15.
Nat Plants ; 2(5): 16045, 2016 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-27243647

RESUMO

The photosynthetic apparatus of green plants is well known for its extremely high efficiency that allows them to operate under dim light conditions. On the other hand, intense sunlight may result in overexcitation of the light-harvesting antenna and the formation of reactive compounds capable of 'burning out' the whole photosynthetic unit. Non-photochemical quenching is a self-regulatory mechanism utilized by green plants on a molecular level that allows them to safely dissipate the detrimental excess excitation energy as heat. Although it is believed to take place in the plant's major light-harvesting complexes (LHC) II, there is still no consensus regarding its molecular nature. To get more insight into its physical origin, we performed high-resolution time-resolved fluorescence measurements of LHCII trimers and their aggregates across a wide temperature range. Based on simulations of the excitation energy transfer in the LHCII aggregate, we associate the red-emitting state, having fluorescence maximum at ∼700 nm, with the partial mixing of excitonic and chlorophyll-chlorophyll charge transfer states. On the other hand, the quenched state has a totally different nature and is related to the incoherent excitation transfer to the short-lived carotenoid excited states. Our results also show that the required level of photoprotection in vivo can be achieved by a very subtle change in the number of LHCIIs switched to the quenched state.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Spinacia oleracea/fisiologia , Fluorescência
16.
J Photochem Photobiol B ; 152(Pt B): 215-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26404506

RESUMO

The antenna of photosystem II in plants possesses a remarkable functional flexibility, allowing for the photoprotective regulation of light-harvesting in the face of rapid fluctuations in light intensity. Central to this adaptability is the reversible formation of dissipative energy transfer pathways within the antenna that protect the reaction centres from a potentially damaging excess of excitation energy. The exact molecular nature of these pathways and the mechanism by which they form are still open questions within the field of photosynthesis research. We present a review of current knowledge on the subject. We discuss the multi-scale nature of these pathways, how intrinsic structural and electronic changes within individual antenna proteins are coupled to large scale changes in the structure and energetic connectivity of the membrane as a whole. We review the physical properties and likely validity of current competing models of the dissipation mechanism before discussing a recently studied general property of the dissipative pathways--the slow and economic nature of the NPQ quencher. This property reflects the finely-tuned nature of the quenching pathway, i.e., its ability to offer protection to the photosynthetic machinery without compromising normal photosynthetic function.


Assuntos
Transferência de Energia , Complexo de Proteína do Fotossistema II/metabolismo , Plantas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/química , Plantas/enzimologia
17.
Phys Chem Chem Phys ; 17(24): 15857-67, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26017055

RESUMO

The rapid, photoprotective down-regulation of plant light-harvesting in bright light proceeds via the non-photochemical quenching of chlorophyll excitation energy in the major photosystem II light-harvesting complex LHCII. However, there is currently no consensus regarding the precise mechanism by which excess energy is quenched. Current X-ray structures of this complex correspond to a dissipative conformation and therefore correct microscopic theoretical modelling should capture this property. Despite their accuracy in explaining the steady state spectroscopy of this complex, chlorophyll-only models (those that neglect the energetic role of carotenoids) do not explain the observed fluorescence quenching. To address this gap, we have used a combination of the semi-empirical MNDO-CAS-CI and the Transition Density Cube method to model all chlorophyll-carotenoid energy transfer pathways in the highly quenched LHCII X-ray structure. Our simulations reveal that the inclusion of carotenoids in this microscopic model results in profound excitation quenching, reducing the predicted excitation lifetime of the complex from 4 ns (chlorophyll-only) to 67 ps. The model indicates that energy dissipation proceeds via slow excitation transfer (>20 ps) from chlorophyll to the forbidden S1 excited state of the centrally bound lutein molecules followed by the rapid (∼10 ps) radiationless decay to the ground state, with the latter being assumed from experimental measurements of carotenoid excited state lifetimes. Violaxanthin and neoxanthin do not contribute to this quenching. This work presents the first all-pigment microscopic model of LHCII and the first attempt to capture the dissipative character of the known structure.


Assuntos
Complexo de Proteína do Fotossistema II/química , Teoria Quântica , Transferência de Energia , Modelos Moleculares , Complexo de Proteína do Fotossistema II/metabolismo
18.
Nat Commun ; 5: 4433, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25014663

RESUMO

The light-harvesting antenna of higher plant photosystem II has an intrinsic capability for self-defence against intense sunlight. The thermal dissipation of excess energy can be measured as the non-photochemical quenching of chlorophyll fluorescence. It has recently been proposed that the transition between the light-harvesting and self-defensive modes is associated with a reorganization of light-harvesting complexes. Here we show that despite structural changes, the photosystem II cross-section does not decrease. Our study reveals that the efficiency of energy trapping by the non-photochemical quencher(s) is lower than the efficiency of energy capture by the reaction centres. Consequently, the photoprotective mechanism works effectively for closed rather than open centres. This type of defence preserves the exceptional efficiency of electron transport in a broad range of light intensities, simultaneously ensuring high photosynthetic productivity and, under hazardous light conditions, sufficient photoprotection for both the reaction centre and the light-harvesting pigments of the antenna.


Assuntos
Arabidopsis/fisiologia , Complexos de Proteínas Captadores de Luz/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Energia Solar , Modelos Biológicos , Fotossíntese/fisiologia , Folhas de Planta/fisiologia
19.
Phys Chem Chem Phys ; 16(12): 5571-80, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24513782

RESUMO

The major photosystem II antenna complex, LHCII, possesses an intrinsic conformational switch linked to the formation of a photoprotective, excitation-quenching state. Recent solid state NMR experiments revealed that aggregation-induced quenching in (13)C-enriched LHCII from C. reinhardtii is associated with changes to the chemical shifts of three specific (13)C atoms in the Chla conjugated macrocycle. We performed DFT-based NMR calculations on the strongly-quenched crystal structure of LHCII (taken from spinach). We demonstrate that specific Chla-xanthophyll interactions in the quenched structure lead to changes in the Chla(13)C chemical shifts that are qualitatively similar to those observed by solid state NMR. We propose that these NMR changes are due to modulations in Chla-xanthophyll associations that occur due to a quenching-associated functional conformation change in the lutein and neoxanthin domains of LHCII. The combination of solid-state NMR and theoretical modeling is therefore a powerful tool for assessing functional conformational switching in the photosystem II antenna.


Assuntos
Chlamydomonas reinhardtii/química , Complexos de Proteínas Captadores de Luz/química , Ressonância Magnética Nuclear Biomolecular , Complexo de Proteína do Fotossistema II/química , Chlamydomonas reinhardtii/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Complexo de Proteína do Fotossistema II/metabolismo , Conformação Proteica , Teoria Quântica
20.
Phys Chem Chem Phys ; 15(29): 12253-61, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23771239

RESUMO

In higher plants, high light conditions trigger the activation of non-photochemical quenching (NPQ), a process of photoprotective light energy dissipation, via acidification of the chloroplast lumen. Spectral changes occurring in the neoxanthin domain of the major light harvesting antenna complex (LHCII) have previously provided indirect evidence of a protein conformational switch during NPQ. We report here of two recombinant LHCII complexes mutated at the level of lumenal loop with altered quenching capacity with respect to the control. Replacement of the acidic lumenal-facing residue aspartate 111 (D111) with neutral valine (V111) yielded a recombinant complex with increased quenching capacity under low pH, due to a shift of the pK by 1 pH unit. The increase in total quenching was consistent with 40% reduction in the relative chlorophyll fluorescence lifetime and was accompanied by a lower energy emitting state of the mutant, as demonstrated by 77 K fluorescence spectroscopy. On the other hand, replacement of acidic glutamate 94 (E94) with glycine (G94) resulted in reduction of the fluorescence quenching yield attained at low pH. These results show for the first time that a subtle change in the LHCII apoprotein structure at the level of the lumenal loop induced by single aminoacid mutagenesis can affect protein sensitivity to pH leading to the establishment of NPQ. This work opens a potential avenue for manipulation of light harvesting efficiency in the natural antenna pigment-protein complexes that can be used for the creation of hybrid light energy conversion systems in future.


Assuntos
Apoproteínas/química , Complexos de Proteínas Captadores de Luz/metabolismo , Substituição de Aminoácidos , Apoproteínas/metabolismo , Concentração de Íons de Hidrogênio , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Folhas de Planta/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometria de Fluorescência , Temperatura , Xantofilas/química , Xantofilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...