Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(12): e113151, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25462571

RESUMO

Parkinson disease (PD) is the second leading neurodegenerative disease in the US. As there is no known cause or cure for PD, researchers continue to investigate disease mechanisms and potential new therapies in cell culture and in animal models of PD. In PD, one of the most profoundly affected neuronal populations is the tyrosine hydroxylase (TH)-expressing dopaminergic (DA) neurons of the substantia nigra pars compacta (SNpc). These DA-producing neurons undergo degeneration while neighboring DA-producing cells of the ventral tegmental area (VTA) are largely spared. To aid in these studies, The Michael J. Fox Foundation (MJFF) partnered with Thomas Jefferson University and Taconic Inc. to generate new transgenic rat lines carrying the human TH gene promoter driving EGFP using a 11 kb construct used previously to create a hTH-GFP mouse reporter line. Of the five rat founder lines that were generated, three exhibited high level specific GFP fluorescence in DA brain structures (ie. SN, VTA, striatum, olfactory bulb, hypothalamus). As with the hTH-GFP mouse, none of the rat lines exhibit reporter expression in adrenergic structures like the adrenal gland. Line 12141, with its high levels of GFP in adult DA brain structures and minimal ectopic GFP expression in non-DA structures, was characterized in detail. We show here that this line allows for anatomical visualization and microdissection of the rat midbrain into SNpc and/or VTA, enabling detailed analysis of midbrain DA neurons and axonal projections after toxin treatment in vivo. Moreover, we further show that embryonic SNpc and/or VTA neurons, enriched by microdissection or FACS, can be used in culture or transplant studies of PD. Thus, the hTH-GFP reporter rat should be a valuable tool for Parkinson's disease research.


Assuntos
Dopamina/metabolismo , Proteínas de Fluorescência Verde/genética , Doença de Parkinson/genética , Parte Compacta da Substância Negra/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Humanos , Camundongos , Bulbo Olfatório/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Regiões Promotoras Genéticas/genética , Ratos , Tirosina 3-Mono-Oxigenase/genética
2.
Mov Disord ; 29(6): 772-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610195

RESUMO

Amantadine, an N-methyl-D-aspartate glutamate receptor antagonist, is currently the only pharmacological treatment for levodopa-induced dyskinesia (LID) in Parkinson's disease (PD), but causes adverse effects on the central nervous system at therapeutic doses. Fenobam, a negative modulator of metabotropic glutamate receptor subtype 5, has recently been reported to attenuate LID in MPTP-treated macaques. The aim of the current study was to investigate the treatment interactions of fenobam and amantadine on LID in the MPTP-treated macaque model of PD. The antidyskinetic and -parkinsonian effects were measured after administration of fenobam (10-30 mg/kg) and amantadine (10-30 mg/kg) alone and in combination. Fenobam (30 mg/kg) and amantadine (30 mg/kg) alone reduced LID, whereas lower doses of either drug did not cause any significant effects. A combined treatment of fenobam and amantadine at subthreshold doses (10 and 20 mg/kg) significantly reduced LID without worsening PD disability. These data suggest that a low-dose combination of fenobam and amantadine can be used for alleviating dyskinesia without causing adverse motor effects. Such combined therapies may offer a new therapeutic strategy for treatment of LID in PD patients.


Assuntos
Amantadina/uso terapêutico , Discinesia Induzida por Medicamentos/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Imidazóis/uso terapêutico , Análise de Variância , Animais , Antiparkinsonianos/efeitos adversos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Discinesia Induzida por Medicamentos/etiologia , Feminino , Levodopa/efeitos adversos , Intoxicação por MPTP/tratamento farmacológico , Macaca fascicularis
3.
Neuron ; 79(6): 1123-35, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24050402

RESUMO

Neurons of the cerebral cortex are organized in layers and columns. Unlike laminar patterning, the mechanisms underlying columnar organization remain largely unexplored. Here, we show that ephrin-B1 plays a key role in this process through the control of nonradial steps of migration of pyramidal neurons. In vivo gain of function of ephrin-B1 resulted in a reduction of tangential motility of pyramidal neurons, leading to abnormal neuronal clustering. Conversely, following genetic disruption of ephrin-B1, cortical neurons displayed a wider lateral dispersion, resulting in enlarged ontogenic columns. Dynamic analyses revealed that ephrin-B1 controls the lateral spread of pyramidal neurons by limiting neurite extension and tangential migration during the multipolar phase. Furthermore, we identified P-Rex1, a guanine-exchange factor for Rac3, as a downstream ephrin-B1 effector required to control migration during the multipolar phase. Our results demonstrate that ephrin-B1 inhibits nonradial migration of pyramidal neurons, thereby controlling the pattern of cortical columns.


Assuntos
Movimento Celular/genética , Córtex Cerebral/citologia , Efrina-B1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Piramidais/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Proteínas de Transporte/metabolismo , Adesão Celular/genética , Proteínas de Ciclo Celular/metabolismo , Eletroporação , Embrião de Mamíferos , Efrina-B1/deficiência , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Imunoprecipitação , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso , Proteínas Nucleares/metabolismo , Gravidez , Proteínas Repressoras/metabolismo
4.
Proc Natl Acad Sci U S A ; 108(25): 10343-8, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21646515

RESUMO

Recent reports demonstrate that somatic mouse cells can be directly converted to other mature cell types by using combined expression of defined factors. Here we show that the same strategy can be applied to human embryonic and postnatal fibroblasts. By overexpression of the transcription factors Ascl1, Brn2, and Myt1l, human fibroblasts were efficiently converted to functional neurons. We also demonstrate that the converted neurons can be directed toward distinct functional neurotransmitter phenotypes when the appropriate transcriptional cues are provided together with the three conversion factors. By combining expression of the three conversion factors with expression of two genes involved in dopamine neuron generation, Lmx1a and FoxA2, we could direct the phenotype of the converted cells toward dopaminergic neurons. Such subtype-specific induced neurons derived from human somatic cells could be valuable for disease modeling and cell replacement therapy.


Assuntos
Transdiferenciação Celular/fisiologia , Dopamina/metabolismo , Fibroblastos/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Neurônios/citologia , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Development ; 133(22): 4415-20, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17035292

RESUMO

Ephrin/Eph ligands and receptors are best known for their prominent role in topographic mapping of neural connectivity. Despite the large amount of work centered on ephrin/Eph-dependent signaling pathways in various cellular contexts, the molecular mechanisms of action of Eph receptors in neural mapping, requiring dynamic interactions between complementary gradients of ephrins and Eph receptors, remain largely unknown. Here, we investigated in vivo the signaling mechanisms of neural mapping mediated by the EphA4 receptor, previously shown to control topographic specificity of thalamocortical axons in the mouse somatosensory system. Using axon tracing analyses of knock-in mouse lines displaying selective mutations for the Epha4 gene, we determined for the first time which intracellular domains of an Eph receptor are required for topographic mapping. We provide direct in vivo evidence that the tyrosine kinase domain of EphA4, as well as a tight regulation of its activity, are required for topographic mapping of thalamocortical axons, whereas non-catalytic functional modules, such as the PDZ-binding motif (PBM) and the Sterile-alpha motif (SAM) domain, are dispensable. These data provide a novel insight into the molecular mechanisms of topographic mapping, and constitute a physiological framework for the dissection of the downstream signaling cascades involved.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Receptor EphA4/genética , Transdução de Sinais/genética , Núcleos Ventrais do Tálamo/embriologia , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Camundongos , Camundongos Mutantes , Mutagênese , Vias Neurais/embriologia , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia
6.
Neuron ; 47(4): 515-28, 2005 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16102535

RESUMO

Signaling by receptor tyrosine kinases (RTKs) is mediated by their intrinsic kinase activity. Typically, kinase-activating mutations result in ligand-independent signaling and gain-of-function phenotypes. Like other RTKs, Ephs require kinase activity to signal, but signaling by Ephs in vitro also requires clustering by their membrane bound ephrin ligands. The relative importance of Eph kinase activity and clustering for in vivo functions is unknown. We find that knockin mice expressing a mutant form of EphA4 (EphA4(EE)), whose kinase is constitutively activated in the absence of ephrinB ligands, are deficient in the development of thalamocortical projections and some aspects of central pattern generator rhythmicity. Surprisingly, other functions of EphA4 were regulated normally by EphA4(EE), including midline axon guidance, hindlimb locomotion, in vitro growth cone collapse, and phosphorylation of ephexin1. These results suggest that signaling of Eph RTKs follows a multistep process of induced kinase activity and higher-order clustering different from RTKs responding to soluble ligands.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Efrinas/metabolismo , Cones de Crescimento/metabolismo , Vias Neurais/crescimento & desenvolvimento , Agregação de Receptores/fisiologia , Receptor EphA4/metabolismo , Animais , Animais Recém-Nascidos , Comunicação Celular/genética , Diferenciação Celular/genética , Células Cultivadas , Sistema Nervoso Central/metabolismo , Cones de Crescimento/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Mutação/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Vias Neurais/metabolismo , Fosforilação , Receptor EphA4/genética , Receptores da Família Eph/metabolismo , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo
7.
Nature ; 435(7046): 1244-50, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15902206

RESUMO

Mechanisms controlling brain size include the regulation of neural progenitor cell proliferation, differentiation, survival and migration. Here we show that ephrin-A/EphA receptor signalling plays a key role in controlling the size of the mouse cerebral cortex by regulating cortical progenitor cell apoptosis. In vivo gain of EphA receptor function, achieved through ectopic expression of ephrin-A5 in early cortical progenitors expressing EphA7, caused a transient wave of neural progenitor cell apoptosis, resulting in premature depletion of progenitors and a subsequent dramatic decrease in cortical size. In vitro treatment with soluble ephrin-A ligands similarly induced the rapid death of cultured dissociated cortical progenitors in a caspase-3-dependent manner, thereby confirming a direct effect of ephrin/Eph signalling on apoptotic cascades. Conversely, in vivo loss of EphA function, achieved through EphA7 gene disruption, caused a reduction in apoptosis occurring normally in forebrain neural progenitors, resulting in an increase in cortical size and, in extreme cases, exencephalic forebrain overgrowth. Together, these results identify ephrin/Eph signalling as a physiological trigger for apoptosis that can alter brain size and shape by regulating the number of neural progenitors.


Assuntos
Apoptose , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Efrinas/metabolismo , Neurônios/citologia , Transdução de Sinais , Células-Tronco/citologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Caspase 3 , Caspases/metabolismo , Efrina-A5/genética , Efrina-A5/metabolismo , Efrinas/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Neurônios/metabolismo , Tamanho do Órgão , Receptores da Família Eph/deficiência , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Células-Tronco/metabolismo
8.
Neuron ; 39(3): 453-65, 2003 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-12895420

RESUMO

The mechanisms generating precise connections between specific thalamic nuclei and cortical areas remain poorly understood. Using axon tracing analysis of ephrin/Eph mutant mice, we provide in vivo evidence that Eph receptors in the thalamus and ephrins in the cortex control intra-areal topographic mapping of thalamocortical (TC) axons. In addition, we show that the same ephrin/Eph genes unexpectedly control the inter-areal specificity of TC projections through the early topographic sorting of TC axons in an intermediate target, the ventral telencephalon. Our results constitute the first identification of guidance cues involved in inter-areal specificity of TC projections and demonstrate that the same set of mapping labels is used differentially for the generation of topographic specificity of TC projections between and within individual cortical areas.


Assuntos
Córtex Cerebral/metabolismo , Efrina-A4/genética , Efrina-A5/genética , Receptor EphA4/genética , Receptor EphA5/genética , Tálamo/metabolismo , Animais , Mapeamento Encefálico/métodos , Córtex Cerebral/embriologia , Córtex Cerebral/enzimologia , Efrina-A4/biossíntese , Efrina-A4/fisiologia , Efrina-A5/biossíntese , Efrina-A5/fisiologia , Feminino , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/embriologia , Vias Neurais/enzimologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Receptor EphA4/biossíntese , Receptor EphA4/fisiologia , Receptor EphA5/biossíntese , Receptor EphA5/fisiologia , Tálamo/embriologia , Tálamo/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA