Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105630, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199568

RESUMO

Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.


Assuntos
Proteínas do Domínio Armadillo , Proteínas do Citoesqueleto , Neurônios , Animais , Camundongos , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Axônios/metabolismo , Calpaína/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dendritos/metabolismo , Neurônios/metabolismo , Transdução de Sinais
2.
Nat Neurosci ; 26(3): 416-429, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635496

RESUMO

Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Microglia , Barreira Hematoencefálica , Distribuição Tecidual , Anticorpos , Encéfalo , Modelos Animais de Doenças , Glicoproteínas de Membrana , Receptores Imunológicos/genética
3.
Mol Neurodegener ; 17(1): 41, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690868

RESUMO

BACKGROUND: Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding mutations (Swedish, Arctic and Austrian) to the mouse App gene. Amyloid-ß pathology, neurodegeneration, glial responses, brain metabolism and behavioral phenotypes were characterized in heterozygous and homozygous AppSAA mice at different ages in brain and/ or biofluids. Wild type littermate mice were used as experimental controls. We used in situ imaging technologies to define the whole-brain distribution of amyloid plaques and compare it to other AD mouse models and human brain pathology. To further explore the microglial response to AD relevant pathology, we isolated microglia with fibrillar Aß content from the brain and performed transcriptomics and metabolomics analyses and in vivo brain imaging to measure energy metabolism and microglial response. Finally, we also characterized the mice in various behavioral assays. RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aß content. The AppSAA knock-in mouse model recapitulates key pathological features of AD such as a progressive accumulation of parenchymal amyloid plaques and vascular amyloid deposits, altered astroglial and microglial responses and elevation of CSF markers of neurodegeneration. Those observations were associated with increased TSPO and FDG-PET brain signals and a hyperactivity phenotype as the animals aged. DISCUSSION: Our findings demonstrate that fibrillar Aß in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Placa Amiloide/patologia , Receptores de GABA/metabolismo
4.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226042

RESUMO

Delivery of biotherapeutics across the blood-brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR-binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Receptores da Transferrina , Proteínas Recombinantes de Fusão , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Iduronato Sulfatase/metabolismo , Iduronato Sulfatase/farmacologia , Lisossomos/metabolismo , Camundongos , Mucopolissacaridose II/metabolismo , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Distribuição Tecidual
5.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622797

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficiency of the iduronate-2-sulfatase (IDS) enzyme, resulting in cellular accumulation of glycosaminoglycans (GAGs) throughout the body. Treatment of MPS II remains a considerable challenge as current enzyme replacement therapies do not adequately control many aspects of the disease, including skeletal and neurological manifestations. We developed an IDS transport vehicle (ETV:IDS) that is engineered to bind to the transferrin receptor; this design facilitates receptor-mediated transcytosis of IDS across the blood-brain barrier and improves its distribution into the brain while maintaining distribution to peripheral tissues. Here we show that chronic systemic administration of ETV:IDS in a mouse model of MPS II reduced levels of peripheral and central nervous system GAGs, microgliosis, and neurofilament light chain, a biomarker of neuronal injury. Additionally, ETV:IDS rescued auricular and skeletal abnormalities when introduced in adult MPS II mice. These effects were accompanied by improvements in several neurobehavioral domains, including motor skills, sensorimotor gating, and learning and memory. Together, these results highlight the therapeutic potential of ETV:IDS for treating peripheral and central abnormalities in MPS II. DNL310, an investigational ETV:IDS molecule, is currently in clinical trials as a potential treatment for patients with MPS II.


Assuntos
Barreira Hematoencefálica/metabolismo , Terapia de Reposição de Enzimas/métodos , Iduronato Sulfatase/administração & dosagem , Mucopolissacaridose II/tratamento farmacológico , Receptores da Transferrina/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Glicosaminoglicanos/metabolismo , Iduronato Sulfatase/genética , Memória/efeitos dos fármacos , Camundongos , Camundongos Knockout , Destreza Motora/efeitos dos fármacos , Mucopolissacaridose II/genética , Mucopolissacaridose II/metabolismo , Mucopolissacaridose II/fisiopatologia , Fenótipo , Filtro Sensorial/efeitos dos fármacos , Esqueleto/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Transcitose
6.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751752

RESUMO

We recently developed a blood-brain barrier (BBB)-penetrating enzyme transport vehicle (ETV) fused to the lysosomal enzyme iduronate 2-sulfatase (ETV:IDS) and demonstrated its ability to reduce glycosaminoglycan (GAG) accumulation in the brains of a mouse model of mucopolysaccharidosis (MPS) II. To accurately quantify GAGs, we developed a plate-based high-throughput enzymatic digestion assay coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure heparan sulfate and dermatan sulfate derived disaccharides in tissue, cerebrospinal fluid (CSF) and individual cell populations isolated from mouse brain. The method offers ultra-high sensitivity enabling quantitation of specific GAG species in as low as 100,000 isolated neurons and a low volume of CSF. With an LOD at 3 ng/mL and LLOQs at 5-10 ng/mL, this method is at least five times more sensitive than previously reported approaches. Our analysis demonstrated that the accumulation of CSF and brain GAGs are in good correlation, supporting the potential use of CSF GAGs as a surrogate biomarker for brain GAGs. The bioanalytical method was qualified through the generation of standard curves in matrix for preclinical studies of CSF, demonstrating the feasibility of this assay for evaluating therapeutic effects of ETV:IDS in future studies and applications in a wide variety of MPS disorders.


Assuntos
Biomarcadores/metabolismo , Glicosaminoglicanos/isolamento & purificação , Iduronato Sulfatase/genética , Mucopolissacaridose II/diagnóstico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Cromatografia Líquida , Dermatan Sulfato/farmacologia , Dissacarídeos/química , Modelos Animais de Doenças , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/farmacologia , Humanos , Iduronato Sulfatase/metabolismo , Camundongos , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Espectrometria de Massas em Tandem
7.
Ann Clin Transl Neurol ; 7(7): 1103-1116, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32515902

RESUMO

OBJECTIVE: To investigate neurodegenerative and inflammatory biomarkers in people with amyotrophic lateral sclerosis (PALS), evaluate their predictive value for ALS progression rates, and assess their utility as pharmacodynamic biomarkers for monitoring treatment effects. METHODS: De-identified, longitudinal plasma, and cerebrospinal fluid (CSF) samples from PALS (n = 108; 85 with samples from ≥2 visits) and controls without neurological disease (n = 41) were obtained from the Northeast ALS Consortium (NEALS) Biofluid Repository. Seventeen of 108 PALS had familial ALS, of whom 10 had C9orf72 mutations. Additional healthy control CSF samples (n = 35) were obtained from multiple sources. We stratified PALS into fast- and slow-progression subgroups using the ALS Functional Rating Scale-Revised change rate. We compared cytokines/chemokines and neurofilament (NF) levels between PALS and controls, among progression subgroups, and in those with C9orf72 mutations. RESULTS: We found significant elevations of cytokines, including MCP-1, IL-18, and neurofilaments (NFs), indicators of neurodegeneration, in PALS versus controls. Among PALS, these cytokines and NFs were significantly higher in fast-progression and C9orf72 mutation subgroups versus slow progressors. Analyte levels were generally stable over time, a key feature for monitoring treatment effects. We demonstrated that CSF/plasma neurofilament light chain (NFL) levels may predict disease progression, and stratification by NFL levels can enrich for more homogeneous patient groups. INTERPRETATION: Longitudinal stability of cytokines and NFs in PALS support their use for monitoring responses to immunomodulatory and neuroprotective treatments. NFs also have prognostic value for fast-progression patients and may be used to select similar patient subsets in clinical trials.


Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/metabolismo , Citocinas/metabolismo , Progressão da Doença , Proteínas de Neurofilamentos/metabolismo , Adulto , Idoso , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Bancos de Espécimes Biológicos , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Proteína C9orf72/genética , Citocinas/sangue , Citocinas/líquido cefalorraquidiano , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/sangue , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Prognóstico
8.
Sci Transl Med ; 12(545)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461331

RESUMO

Most lysosomal storage diseases (LSDs) involve progressive central nervous system (CNS) impairment, resulting from deficiency of a lysosomal enzyme. Treatment of neuronopathic LSDs remains a considerable challenge, as approved intravenously administered enzyme therapies are ineffective in modifying CNS disease because they do not effectively cross the blood-brain barrier (BBB). We describe a therapeutic platform for increasing the brain exposure of enzyme replacement therapies. The enzyme transport vehicle (ETV) is a lysosomal enzyme fused to an Fc domain that has been engineered to bind to the transferrin receptor, which facilitates receptor-mediated transcytosis across the BBB. We demonstrate that ETV fusions containing iduronate 2-sulfatase (ETV:IDS), the lysosomal enzyme deficient in mucopolysaccharidosis type II, exhibited high intrinsic activity and degraded accumulated substrates in both IDS-deficient cell and in vivo models. ETV substantially improved brain delivery of IDS in a preclinical model of disease, enabling enhanced cellular distribution to neurons, astrocytes, and microglia throughout the brain. Improved brain exposure for ETV:IDS translated to a reduction in accumulated substrates in these CNS cell types and peripheral tissues and resulted in a complete correction of downstream disease-relevant pathologies in the brain, including secondary accumulation of lysosomal lipids, perturbed gene expression, neuroinflammation, and neuroaxonal damage. These data highlight the therapeutic potential of the ETV platform for LSDs and provide preclinical proof of concept for TV-enabled therapeutics to treat CNS diseases more broadly.


Assuntos
Barreira Hematoencefálica , Iduronato Sulfatase , Animais , Encéfalo , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Lisossomos , Camundongos
9.
Neuron ; 105(5): 837-854.e9, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31902528

RESUMO

Loss-of-function (LOF) variants of TREM2, an immune receptor expressed in microglia, increase Alzheimer's disease risk. TREM2 senses lipids and mediates myelin phagocytosis, but its role in microglial lipid metabolism is unknown. Combining chronic demyelination paradigms and cell sorting with RNA sequencing and lipidomics, we find that wild-type microglia acquire a disease-associated transcriptional state, while TREM2-deficient microglia remain largely homeostatic, leading to neuronal damage. TREM2-deficient microglia phagocytose myelin debris but fail to clear myelin cholesterol, resulting in cholesteryl ester (CE) accumulation. CE increase is also observed in APOE-deficient glial cells, reflecting impaired brain cholesterol transport. This finding replicates in myelin-treated TREM2-deficient murine macrophages and human iPSC-derived microglia, where it is rescued by an ACAT1 inhibitor and LXR agonist. Our studies identify TREM2 as a key transcriptional regulator of cholesterol transport and metabolism under conditions of chronic myelin phagocytic activity, as TREM2 LOF causes pathogenic lipid accumulation in microglia.


Assuntos
Encéfalo/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Microglia/metabolismo , Bainha de Mielina/metabolismo , Fagocitose/genética , Receptores Imunológicos/genética , Acetil-CoA C-Acetiltransferase/antagonistas & inibidores , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Ésteres do Colesterol/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Células-Tronco Pluripotentes Induzidas , Metabolismo dos Lipídeos/genética , Lipidômica , Receptores X do Fígado/agonistas , Camundongos , Camundongos Knockout , Camundongos Knockout para ApoE , RNA-Seq
10.
Neurotherapeutics ; 16(3): 808-827, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30815844

RESUMO

The development of neuroprotective therapies is a sought-after goal. By screening combinatorial chemical libraries using in vitro assays, we identified the small molecule BN201 that promotes the survival of cultured neural cells when subjected to oxidative stress or when deprived of trophic factors. Moreover, BN201 promotes neuronal differentiation, the differentiation of precursor cells to mature oligodendrocytes in vitro, and the myelination of new axons. BN201 modulates several kinases participating in the insulin growth factor 1 pathway including serum-glucocorticoid kinase and midkine, inducing the phosphorylation of NDRG1 and the translocation of the transcription factor Foxo3 to the cytoplasm. In vivo, BN201 prevents axonal and neuronal loss, and it promotes remyelination in models of multiple sclerosis, chemically induced demyelination, and glaucoma. In summary, we provide a new promising strategy to promote neuroaxonal survival and remyelination, potentially preventing disability in brain diseases.


Assuntos
Amidas/uso terapêutico , Axônios/efeitos dos fármacos , Encefalite/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Peptoides/uso terapêutico , Pirrolidinonas/uso terapêutico , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Imunofluorescência , Glaucoma/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nervo Óptico/efeitos dos fármacos , Proguanil , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Triazinas
13.
Ecology ; 98(1): 125-137, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27935029

RESUMO

Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6°C). We expect that in the past 121 yr, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze-sensitive organisms. In broad terms, our findings can be used to better understand and anticipate the ecological effects of changing winter climate extremes, especially within the transition zone between tropical and temperate climates.


Assuntos
Avicennia/crescimento & desenvolvimento , Mudança Climática , Água do Mar/química , Temperatura , Áreas Alagadas , Oceanos e Mares
14.
BMC Res Notes ; 9(1): 444, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27629829

RESUMO

BACKGROUND: Newly proliferated oligodendrocyte precursor cells (OPCs) migrate and surround lesions of patients with multiple sclerosis (MS) and other demyelinating diseases, but fail to differentiate into oligodendrocytes (OLs) and remyelinate remaining viable axons. The abundance of secreted inflammatory factors within and surrounding these lesions likely plays a major inhibitory role, promoting cell death and preventing OL differentiation and axon remyelination. To identify clinical candidate compounds that may protect existing and differentiating OLs in patients, we have developed a high throughput screening (HTS) assay that utilizes purified rat OPCs. RESULTS: Using a fluorescent indicator of cell viability coupled with image quantification, we developed an assay to allow the identification of compounds that promote OL viability and differentiation in the presence of the synergistic inflammatory cytokines, tumor necrosis factor α and interferon-γ. We have utilized this assay to screen the NIH clinical collection library and identify compounds that protect OLs and promote OL differentiation in the presence of these inflammatory cytokines. CONCLUSION: This primary OL-based cytokine protection assay is adaptable for HTS and may be easily modified for profiling of compounds in the presence of other potentially inhibitory molecules found in MS lesions. This assay should be of use to those interested in identifying drugs for the treatment of MS and other demyelinating diseases.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Oligodendroglia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Inflamação , Interferon gama/metabolismo , Masculino , Esclerose Múltipla/patologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
15.
BMC Res Notes ; 9(1): 419, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27592856

RESUMO

BACKGROUND: Multiple sclerosis is caused by an autoimmune response resulting in demyelination and neural degeneration. The adult central nervous system has the capacity to remyelinate axons in part through the generation of new oligodendrocytes (OLs). To identify clinical candidate compounds that may promote remyelination, we have developed a high throughput screening (HTS) assay to identify compounds that promote the differentiation of oligodendrocyte precursor cells (OPCs) into OLs. RESULTS: Using acutely dissociated and purified rat OPCs coupled with immunofluorescent image quantification, we have developed an OL differentiation assay. We have validated this assay with a known promoter of differentiation, thyroid hormone, and subsequently used the assay to screen the NIH clinical collection library. We have identified twenty-seven hit compounds which were validated by dose response analysis and the generation of half maximal effective concentration (EC50) values allowed for the ranking of efficacy. The assay identified novel promoters of OL differentiation which we attribute to (1) the incorporation of an OL toxicity pre-screen to allow lowering the concentrations of toxic compounds and (2) the utilization of freshly purified, non-passaged OPCs. These features set our assay apart from other OL differentiation assays used for drug discovery efforts. CONCLUSIONS: This acute primary OL-based differentiation assay should be of use to those interested in screening large compound libraries for the identification of drugs for the treatment of MS and other demyelinating diseases.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Técnicas In Vitro , Esclerose Múltipla/tratamento farmacológico , Ratos , Células-Tronco/citologia
16.
BMC Neurosci ; 17: 16, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-27103572

RESUMO

BACKGROUND: Regeneration of new myelin is impaired in persistent multiple sclerosis (MS) lesions, leaving neurons unable to function properly and subject to further degeneration. Current MS therapies attempt to ameliorate autoimmune-mediated demyelination, but none directly promote the regeneration of lost and damaged myelin of the central nervous system (CNS). Development of new drugs that stimulate remyelination has been hampered by the inability to evaluate axonal myelination in a rapid CNS culture system. RESULTS: We established a high throughput cell-based assay to identify compounds that promote myelination. Culture methods were developed for initiating myelination in vitro using primary embryonic rat cortical cells. We developed an immunofluorescent phenotypic image analysis method to quantify the morphological alignment of myelin characteristic of the initiation of myelination. Using γ-secretase inhibitors as promoters of myelination, the optimal growth, time course and compound treatment conditions were established in a 96 well plate format. We have characterized the cortical myelination assay by evaluating the cellular composition of the cultures and expression of markers of differentiation over the time course of the assay. We have validated the assay scalability and consistency by screening the NIH clinical collection library of 727 compounds and identified ten compounds that promote myelination. Half maximal effective concentration (EC50) values for these compounds were determined to rank them according to potency. CONCLUSIONS: We have designed the first high capacity in vitro assay that assesses myelination of live axons. This assay will be ideal for screening large compound libraries to identify new drugs that stimulate myelination. Identification of agents capable of promoting the myelination of axons will likely lead to the development of new therapeutics for MS patients.


Assuntos
Axônios/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/farmacologia , Animais , Axônios/fisiologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Córtex Cerebral/fisiologia , Meios de Cultivo Condicionados/farmacologia , Imunofluorescência/métodos , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/fisiologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Ratos
17.
Dev Cell ; 34(2): 152-67, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26166300

RESUMO

Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/metabolismo , Animais , Axônios/fisiologia , Membrana Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Sistema Nervoso Central/embriologia , Cofilina 1/genética , Gelsolina/genética , Gelsolina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Nervo Óptico/metabolismo , Nervo Óptico/fisiologia , Interferência de RNA , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley
18.
Glia ; 63(5): 768-79, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25557204

RESUMO

Inflammatory signals present in demyelinated multiple sclerosis lesions affect the reparative remyelination process conducted by oligodendrocyte progenitor cells (OPCs). Interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 have differing effects on the viability and growth of OPCs, however the effects of IL-17A are largely unknown. Primary murine OPCs were stimulated with IL-17A and their viability, proliferation, and maturation were assessed in culture. IL-17A-stimulated OPCs exited the cell cycle and differentiated with no loss in viability. Expression of the myelin-specific protein, proteolipid protein, increased in a cerebellar slice culture assay in the presence of IL-17A. Downstream, IL-17A activated ERK1/2 within 15 min and induced chemokine expression in 2 days. These results demonstrate that IL-17A exposure stimulates OPCs to mature and participate in the inflammatory response.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Encefalomielite Autoimune Experimental/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/enzimologia , Células-Tronco/efeitos dos fármacos , Animais , Células Cultivadas , Cerebelo/citologia , Cerebelo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Citometria de Fluxo , Adjuvante de Freund/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Proteolipídica de Mielina/genética , Glicoproteína Mielina-Oligodendrócito/toxicidade , Técnicas de Cultura de Órgãos , Fragmentos de Peptídeos/toxicidade , Receptores de Interleucina-17/deficiência , Receptores de Interleucina-17/genética , Células-Tronco/fisiologia
19.
Cold Spring Harb Protoc ; 2013(9): 854-68, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24003195

RESUMO

Oligodendrocytes are the myelinating cells of the vertebrate central nervous system, responsible for generating the myelin sheath necessary for saltatory conduction. The use of increasingly sophisticated genetic tools, particularly in mice, has vastly increased our understanding of the molecular mechanisms that regulate development of the oligodendrocyte lineage. This increased reliance on the mouse as a genetic model has led to a need for the development of culture methods to allow the use of mouse cells in vitro as well as in vivo. Here, we present a protocol for the isolation of different stages of the oligodendrocyte lineage, oligodendrocyte precursor cells (OPCs) and/or postmitotic oligodendrocytes, from the postnatal mouse cortex using immunopanning. This protocol allows for the subsequent culture or biochemical analysis of these cells.


Assuntos
Separação Celular/métodos , Córtex Cerebral/citologia , Oligodendroglia/fisiologia , Animais , Camundongos
20.
Cold Spring Harb Protoc ; 2013(9): 810-4, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24003197

RESUMO

Oligodendrocytes are the cells of the vertebrate central nervous system responsible for forming myelin sheaths, which are essential for the rapid propagation of action potential. The formation of oligodendrocytes and myelin sheaths is tightly regulated, both temporally and spatially, by a number of extracellular and intracellular factors. For example, notch ligands, thyroid hormones, and mitogens such as platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) can all interact with oligodendrocyte precursor cell-expressed receptors to impact proliferation, differentiation, and myelin gene expression. To facilitate oligodendrocyte biology research, we have developed a technique using immunopanning to isolate different stages of the oligodendrocyte lineage, oligodendrocyte precursor cells and/or postmitotic oligodendrocytes, from postnatal rat or mouse brains. These cells can be cultured in defined, serum-free media in conditions that either promote differentiation into mature oligodendrocytes or continued proliferation as immature oligodendrocyte precursors. These cells represent an ideal system in which to study the regulation of oligodendrocyte proliferation, migration, differentiation, myelin gene expression, or other fundamental aspects of oligodendrocyte biology.


Assuntos
Oligodendroglia/fisiologia , Animais , Encéfalo/citologia , Técnicas de Cultura de Células/métodos , Meios de Cultura Livres de Soro/química , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...