Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 30(8): 1216-1223, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291424

RESUMO

Subnuclear compartmentalization has been proposed to play an important role in gene regulation by segregating active and inactive parts of the genome in distinct physical and biochemical environments. During X chromosome inactivation (XCI), the noncoding Xist RNA coats the X chromosome, triggers gene silencing and forms a dense body of heterochromatin from which the transcription machinery appears to be excluded. Phase separation has been proposed to be involved in XCI, and might explain the exclusion of the transcription machinery by preventing its diffusion into the Xist-coated territory. Here, using quantitative fluorescence microscopy and single-particle tracking, we show that RNA polymerase II (RNAPII) freely accesses the Xist territory during the initiation of XCI. Instead, the apparent depletion of RNAPII is due to the loss of its chromatin stably bound fraction. These findings indicate that initial exclusion of RNAPII from the inactive X reflects the absence of actively transcribing RNAPII, rather than a consequence of putative physical compartmentalization of the inactive X heterochromatin domain.


Assuntos
RNA Polimerase II , RNA Longo não Codificante , RNA Polimerase II/metabolismo , Heterocromatina , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X , Cromatina , RNA não Traduzido/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Sci Rep ; 12(1): 18506, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323770

RESUMO

SARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with significant mortality and morbidity. At this time, the only FDA-approved therapeutic for COVID-19 is remdesivir, a broad-spectrum antiviral nucleoside analog. Efficacy is only moderate, and improved treatment strategies are urgently needed. To accomplish this goal, we devised a strategy to identify compounds that act synergistically with remdesivir in preventing SARS-CoV-2 replication. We conducted combinatorial high-throughput screening in the presence of submaximal remdesivir concentrations, using a human lung epithelial cell line infected with a clinical isolate of SARS-CoV-2. This identified 20 approved drugs that act synergistically with remdesivir, many with favorable pharmacokinetic and safety profiles. Strongest effects were observed with established antivirals, Hepatitis C virus nonstructural protein 5A (HCV NS5A) inhibitors velpatasvir and elbasvir. Combination with their partner drugs sofosbuvir and grazoprevir further increased efficacy, increasing remdesivir's apparent potency > 25-fold. We report that HCV NS5A inhibitors act on the SARS-CoV-2 exonuclease proofreader, providing a possible explanation for the synergy observed with nucleoside analog remdesivir. FDA-approved Hepatitis C therapeutics Epclusa® (velpatasvir/sofosbuvir) and Zepatier® (elbasvir/grazoprevir) could be further optimized to achieve potency and pharmacokinetic properties that support clinical evaluation in combination with remdesivir.


Assuntos
Tratamento Farmacológico da COVID-19 , Hepatite C , Humanos , SARS-CoV-2 , Antivirais/uso terapêutico , Sofosbuvir/farmacologia , Nucleosídeos/farmacologia , Monofosfato de Adenosina , Alanina , Hepacivirus , Hepatite C/tratamento farmacológico , Pulmão
3.
Mol Cell ; 82(11): 2084-2097.e5, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35483357

RESUMO

Gene activation by mammalian transcription factors (TFs) requires multivalent interactions of their low-complexity domains (LCDs), but how such interactions regulate transcription remains unclear. It has been proposed that extensive LCD-LCD interactions culminating in liquid-liquid phase separation (LLPS) of TFs is the dominant mechanism underlying transactivation. Here, we investigated how tuning the amount and localization of LCD-LCD interactions in vivo affects transcription of endogenous human genes. Quantitative single-cell and single-molecule imaging reveals that the oncogenic TF EWS::FLI1 requires a narrow optimum of LCD-LCD interactions to activate its target genes associated with GGAA microsatellites. Increasing LCD-LCD interactions toward putative LLPS represses transcription of these genes in patient-derived cells. Likewise, ectopically creating LCD-LCD interactions to sequester EWS::FLI1 into a well-documented LLPS compartment, the nucleolus, inhibits EWS::FLI1-driven transcription and oncogenic transformation. Our findings show how altering the balance of LCD-LCD interactions can influence transcriptional regulation and suggest a potential therapeutic strategy for targeting disease-causing TFs.


Assuntos
Sarcoma de Ewing , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Mamíferos/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Ativação Transcricional/genética
4.
Nat Struct Mol Biol ; 28(12): 989-996, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811519

RESUMO

The SAGA complex is a regulatory hub involved in gene regulation, chromatin modification, DNA damage repair and signaling. While structures of yeast SAGA (ySAGA) have been reported, there are noteworthy functional and compositional differences for this complex in metazoans. Here we present the cryogenic-electron microscopy (cryo-EM) structure of human SAGA (hSAGA) and show how the arrangement of distinct structural elements results in a globally divergent organization from that of yeast, with a different interface tethering the core module to the TRRAP subunit, resulting in a dramatically altered geometry of functional elements and with the integration of a metazoan-specific splicing module. Our hSAGA structure reveals the presence of an inositol hexakisphosphate (InsP6) binding site in TRRAP and an unusual property of its pseudo-(Ψ)PIKK. Finally, we map human disease mutations, thus providing the needed framework for structure-guided drug design of this important therapeutic target for human developmental diseases and cancer.


Assuntos
Regulação da Expressão Gênica/genética , Histona Acetiltransferases/metabolismo , Elementos Reguladores de Transcrição/genética , Transcrição Gênica/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/metabolismo , Microscopia Crioeletrônica , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Ácido Fítico/metabolismo , Regiões Promotoras Genéticas/genética , Conformação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales
5.
ACS Infect Dis ; 7(8): 2337-2351, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34129317

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has emerged as a major global health threat. The COVID-19 pandemic has resulted in over 168 million cases and 3.4 million deaths to date, while the number of cases continues to rise. With limited therapeutic options, the identification of safe and effective therapeutics is urgently needed. The repurposing of known clinical compounds holds the potential for rapid identification of drugs effective against SARS-CoV-2. Here, we utilized a library of FDA-approved and well-studied preclinical and clinical compounds to screen for antivirals against SARS-CoV-2 in human pulmonary epithelial cells. We identified 13 compounds that exhibit potent antiviral activity across multiple orthogonal assays. Hits include known antivirals, compounds with anti-inflammatory activity, and compounds targeting host pathways such as kinases and proteases critical for SARS-CoV-2 replication. We identified seven compounds not previously reported to have activity against SARS-CoV-2, including B02, a human RAD51 inhibitor. We further demonstrated that B02 exhibits synergy with remdesivir, the only antiviral approved by the FDA to treat COVID-19, highlighting the potential for combination therapy. Taken together, our comparative compound screening strategy highlights the potential of drug repurposing screens to identify novel starting points for development of effective antiviral mono- or combination therapies to treat COVID-19.


Assuntos
Antivirais , COVID-19 , Antivirais/farmacologia , Humanos , Pandemias , SARS-CoV-2
6.
PLoS One ; 16(5): e0251296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34038425

RESUMO

Regular surveillance testing of asymptomatic individuals for SARS-CoV-2 has been center to SARS-CoV-2 outbreak prevention on college and university campuses. Here we describe the voluntary saliva testing program instituted at the University of California, Berkeley during an early period of the SARS-CoV-2 pandemic in 2020. The program was administered as a research study ahead of clinical implementation, enabling us to launch surveillance testing while continuing to optimize the assay. Results of both the testing protocol itself and the study participants' experience show how the program succeeded in providing routine, robust testing capable of contributing to outbreak prevention within a campus community and offer strategies for encouraging participation and a sense of civic responsibility.


Assuntos
COVID-19/diagnóstico , Avaliação de Programas e Projetos de Saúde , Saliva/virologia , Adulto , Idoso , COVID-19/epidemiologia , COVID-19/virologia , Teste para COVID-19/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Normas Sociais , Inquéritos e Questionários , Universidades , Adulto Jovem
7.
Curr Protoc ; 1(4): e130, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33905620

RESUMO

The most common method for RNA detection involves reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis. Commercial one-step master mixes-which include both a reverse transcriptase and a thermostable polymerase and thus allow performing both the RT and qPCR steps consecutively in a sealed well-are key reagents for SARS-CoV-2 diagnostic testing; yet, these are typically expensive and have been affected by supply shortages in periods of high demand. As an alternative, we describe here how to express and purify Taq polymerase and M-MLV reverse transcriptase and assemble a homemade one-step RT-qPCR master mix. This mix can be easily assembled from scratch in any laboratory equipped for protein purification. We also describe two simple alternative methods to prepare clinical swab samples for SARS-CoV-2 RNA detection by RT-qPCR: heat-inactivation for direct addition, and concentration of RNA by isopropanol precipitation. Finally, we describe how to perform RT-qPCR using the homemade master mix, how to prepare in vitro-transcribed RNA standards, and how to use a fluorescence imager for endpoint detection of RT-PCR amplification in the absence of a qPCR machine In addition to being useful for diagnostics, these versatile protocols may be adapted for nucleic acid quantification in basic research. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of a one-step RT-qPCR master mix using homemade enzymes Basic Protocol 2: Preparation of swab samples for direct RT-PCR Alternate Protocol 1: Concentration of RNA from swab samples by isopropanol precipitation Basic Protocol 3: One-step RT-qPCR of RNA samples using a real-time thermocycler Support Protocol: Preparation of RNA concentration standards by in vitro transcription Alternate Protocol 2: One-step RT-PCR using endpoint fluorescence detection.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/economia , Precipitação Química , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Fatores de Tempo
8.
PLoS One ; 16(2): e0246647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33534838

RESUMO

Re-opening of communities in the midst of the ongoing COVID-19 pandemic has ignited new waves of infections in many places around the world. Mitigating the risk of reopening will require widespread SARS-CoV-2 testing, which would be greatly facilitated by simple, rapid, and inexpensive testing methods. This study evaluates several protocols for RNA extraction and RT-qPCR that are simpler and less expensive than prevailing methods. First, isopropanol precipitation is shown to provide an effective means of RNA extraction from nasopharyngeal (NP) swab samples. Second, direct addition of NP swab samples to RT-qPCRs is evaluated without an RNA extraction step. A simple, inexpensive swab collection solution suitable for direct addition is validated using contrived swab samples. Third, an open-source master mix for RT-qPCR is described that permits detection of viral RNA in NP swab samples with a limit of detection of approximately 50 RNA copies per reaction. Quantification cycle (Cq) values for purified RNA from 30 known positive clinical samples showed a strong correlation (r2 = 0.98) between this homemade master mix and commercial TaqPath master mix. Lastly, end-point fluorescence imaging is found to provide an accurate diagnostic readout without requiring a qPCR thermocycler. Adoption of these simple, open-source methods has the potential to reduce the time and expense of COVID-19 testing.


Assuntos
COVID-19/diagnóstico , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Precipitação Química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Limite de Detecção , Nasofaringe/virologia , Fosfoproteínas/genética , RNA Viral/isolamento & purificação , RNA Viral/metabolismo , SARS-CoV-2/isolamento & purificação
9.
EMBO J ; 40(9): e107015, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33555055

RESUMO

Eukaryotic RNA polymerase II (Pol II) contains a tail-like, intrinsically disordered carboxy-terminal domain (CTD) comprised of heptad-repeats, that functions in coordination of the transcription cycle and in coupling transcription to co-transcriptional processes. The CTD repeat number varies between species and generally increases with genome size, but the reasons for this are unclear. Here, we show that shortening the CTD in human cells to half of its length does not generally change pre-mRNA synthesis or processing in cells. However, CTD shortening decreases the duration of promoter-proximal Pol II pausing, alters transcription of putative enhancer elements, and delays transcription activation after stimulation of the MAP kinase pathway. We suggest that a long CTD is required for efficient enhancer-dependent recruitment of Pol II to target genes for their rapid activation.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/metabolismo , Deleção de Sequência , Ativação Transcricional , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Regiões Promotoras Genéticas , Domínios Proteicos , RNA Polimerase II/genética
10.
Elife ; 82019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31038454

RESUMO

RNA Polymerase II (Pol II) and transcription factors form concentrated hubs in cells via multivalent protein-protein interactions, often mediated by proteins with intrinsically disordered regions. During Herpes Simplex Virus infection, viral replication compartments (RCs) efficiently enrich host Pol II into membraneless domains, reminiscent of liquid-liquid phase separation. Despite sharing several properties with phase-separated condensates, we show that RCs operate via a distinct mechanism wherein unrestricted nonspecific protein-DNA interactions efficiently outcompete host chromatin, profoundly influencing the way DNA-binding proteins explore RCs. We find that the viral genome remains largely nucleosome-free, and this increase in accessibility allows Pol II and other DNA-binding proteins to repeatedly visit nearby DNA binding sites. This anisotropic behavior creates local accumulations of protein factors despite their unrestricted diffusion across RC boundaries. Our results reveal underappreciated consequences of nonspecific DNA binding in shaping gene activity, and suggest additional roles for chromatin in modulating nuclear function and organization.


Assuntos
Núcleo Celular/virologia , DNA Viral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Simplexvirus/crescimento & desenvolvimento , Replicação Viral , Animais , Linhagem Celular , Humanos , Ligação Proteica
11.
G3 (Bethesda) ; 9(4): 1045-1053, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30723103

RESUMO

We recently described an unconventional mode of gene regulation in budding yeast by which transcriptional and translational interference collaborate to down-regulate protein expression. Developmentally timed transcriptional interference inhibited production of a well translated mRNA isoform and resulted in the production of an mRNA isoform containing inhibitory upstream open reading frames (uORFs) that prevented translation of the main ORF. Transcriptional interference and uORF-based translational repression are established mechanisms outside of yeast, but whether this type of integrated regulation was conserved was unknown. Here we find that, indeed, a similar type of regulation occurs at the locus for the human oncogene MDM2 We observe evidence of transcriptional interference between the two MDM2 promoters, which produce a poorly translated distal promoter-derived uORF-containing mRNA isoform and a well-translated proximal promoter-derived transcript. Down-regulation of distal promoter activity markedly up-regulates proximal promoter-driven expression and results in local reduction of histone H3K36 trimethylation. Moreover, we observe that this transcript toggling between the two MDM2 isoforms naturally occurs during human embryonic stem cell differentiation programs.


Assuntos
Regulação da Expressão Gênica , Modelos Genéticos , Proteínas Proto-Oncogênicas c-mdm2/genética , Sistemas CRISPR-Cas , Imunoprecipitação da Cromatina , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Células MCF-7 , Regiões Promotoras Genéticas
12.
Nat Struct Mol Biol ; 25(9): 833-840, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127355

RESUMO

The carboxy-terminal domain (CTD) of RNA polymerase (Pol) II is an intrinsically disordered low-complexity region that is critical for pre-mRNA transcription and processing. The CTD consists of hepta-amino acid repeats varying in number from 52 in humans to 26 in yeast. Here we report that human and yeast CTDs undergo cooperative liquid phase separation, with the shorter yeast CTD forming less-stable droplets. In human cells, truncation of the CTD to the length of the yeast CTD decreases Pol II clustering and chromatin association, whereas CTD extension has the opposite effect. CTD droplets can incorporate intact Pol II and are dissolved by CTD phosphorylation with the transcription initiation factor IIH kinase CDK7. Together with published data, our results suggest that Pol II forms clusters or hubs at active genes through interactions between CTDs and with activators and that CTD phosphorylation liberates Pol II enzymes from hubs for promoter escape and transcription elongation.


Assuntos
RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Quinases Ciclina-Dependentes/metabolismo , Humanos , Fosforilação , RNA Polimerase II/química , Sequências Repetitivas de Aminoácidos , Proteínas de Saccharomyces cerevisiae/química , Quinase Ativadora de Quinase Dependente de Ciclina
13.
Science ; 361(6400)2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29930090

RESUMO

Many eukaryotic transcription factors (TFs) contain intrinsically disordered low-complexity sequence domains (LCDs), but how these LCDs drive transactivation remains unclear. We used live-cell single-molecule imaging to reveal that TF LCDs form local high-concentration interaction hubs at synthetic and endogenous genomic loci. TF LCD hubs stabilize DNA binding, recruit RNA polymerase II (RNA Pol II), and activate transcription. LCD-LCD interactions within hubs are highly dynamic, display selectivity with binding partners, and are differentially sensitive to disruption by hexanediols. Under physiological conditions, rapid and reversible LCD-LCD interactions occur between TFs and the RNA Pol II machinery without detectable phase separation. Our findings reveal fundamental mechanisms underpinning transcriptional control and suggest a framework for developing single-molecule imaging screens for drugs targeting gene regulatory interactions implicated in disease.


Assuntos
Proteínas de Ligação a DNA/química , Domínios e Motivos de Interação entre Proteínas , Imagem Individual de Molécula/métodos , Fatores de Transcrição/química , Transcrição Gênica , Ativação Transcricional , Linhagem Celular Tumoral , Genes Sintéticos , Humanos , Regiões Operadoras Genéticas , Ligação Proteica , RNA Polimerase II/química
14.
Wound Repair Regen ; 24(2): 247-62, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26663515

RESUMO

Fibroblasts are important players in regulating tissue homeostasis. In the dermis, they are involved in wound healing where they differentiate into contractile myofibroblasts leading to wound closure. In nonhealing chronic wounds, fibroblasts fail to undertake differentiation. We established and used a human ex vivo model of chronic wounds where fibroblasts can undergo normal myofibroblast differentiation, or take on a nondifferentiable pathological state. At the whole genome scale, we identified the genes that are differentially regulated in these two cell fates. By coupling the search of evolutionary conserved regulatory elements with global gene network expression changes, we identified transcription factors (TF) potentially involved in myofibroblast differentiation, and constructed a network of relationship between these key factors. Among these, we found that TCF4, SOX9, EGR2, and FOXS1 are major regulators of fibroblast to myofibroblast differentiation. Conversely, down-regulation of MEOX2, SIX2, and MAF causes reprogramming of fibroblasts to myofibroblasts even in absence of TGF-ß, the natural inducer of myofibroblast differentiation. These results provide insight into the fibroblast differentiation program and reveal a TF network essential for cellular reprogramming. They could lead to the development of new therapeutics to treat fibroblast-related human pathologies.


Assuntos
Reprogramação Celular/fisiologia , Miofibroblastos/citologia , Úlcera Varicosa/patologia , Cicatrização/fisiologia , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Cultivadas , Técnicas de Reprogramação Celular , Regulação para Baixo , Exsudatos e Transudatos/citologia , Humanos , Pessoa de Meia-Idade , RNA Interferente Pequeno/farmacologia , Fator de Crescimento Transformador beta/metabolismo
15.
Nat Commun ; 6: 7357, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26151127

RESUMO

Many cellular functions rely on DNA-binding proteins finding and associating to specific sites in the genome. Yet the mechanisms underlying the target search remain poorly understood, especially in the case of the highly organized mammalian cell nucleus. Using as a model Tet repressors (TetRs) searching for a multi-array locus, we quantitatively analyse the search process in human cells with single-molecule tracking and single-cell protein-DNA association measurements. We find that TetRs explore the nucleus and reach their target by 3D diffusion interspersed with transient interactions with non-cognate sites, consistent with the facilitated diffusion model. Remarkably, nonspecific binding times are broadly distributed, underlining a lack of clear delimitation between specific and nonspecific interactions. However, the search kinetics is not determined by diffusive transport but by the low association rate to nonspecific sites. Altogether, our results provide a comprehensive view of the recruitment dynamics of proteins at specific loci in mammalian cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Cinética , Conformação Proteica , Transporte Proteico , Proteínas Repressoras/genética
16.
Elife ; 32014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24925319

RESUMO

Gene regulation relies on transcription factors (TFs) exploring the nucleus searching their targets. So far, most studies have focused on how fast TFs diffuse, underestimating the role of nuclear architecture. We implemented a single-molecule tracking assay to determine TFs dynamics. We found that c-Myc is a global explorer of the nucleus. In contrast, the positive transcription elongation factor P-TEFb is a local explorer that oversamples its environment. Consequently, each c-Myc molecule is equally available for all nuclear sites while P-TEFb reaches its targets in a position-dependent manner. Our observations are consistent with a model in which the exploration geometry of TFs is restrained by their interactions with nuclear structures and not by exclusion. The geometry-controlled kinetics of TFs target-search illustrates the influence of nuclear architecture on gene regulation, and has strong implications on how proteins react in the nucleus and how their function can be regulated in space and time.


Assuntos
Núcleo Celular/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Humanos , Proteínas Luminescentes/metabolismo
17.
Science ; 341(6146): 664-7, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23828889

RESUMO

Transcription is reported to be spatially compartmentalized in nuclear transcription factories with clusters of RNA polymerase II (Pol II). However, little is known about when these foci assemble or their relative stability. We developed a quantitative single-cell approach to characterize protein spatiotemporal organization, with single-molecule sensitivity in live eukaryotic cells. We observed that Pol II clusters form transiently, with an average lifetime of 5.1 (± 0.4) seconds, which refutes the notion that they are statically assembled substructures. Stimuli affecting transcription yielded orders-of-magnitude changes in the dynamics of Pol II clusters, which implies that clustering is regulated and plays a role in the cell's ability to effect rapid response to external signals. Our results suggest that transient crowding of enzymes may aid in rate-limiting steps of gene regulation.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase II/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Flavonoides/farmacologia , Humanos , Piperidinas/farmacologia , Análise de Célula Única/métodos , Fatores de Tempo , Elongação da Transcrição Genética/efeitos dos fármacos
18.
Nat Methods ; 10(1): 60-3, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23223154

RESUMO

Conventional acquisition of three-dimensional (3D) microscopy data requires sequential z scanning and is often too slow to capture biological events. We report an aberration-corrected multifocus microscopy method capable of producing an instant focal stack of nine 2D images. Appended to an epifluorescence microscope, the multifocus system enables high-resolution 3D imaging in multiple colors with single-molecule sensitivity, at speeds limited by the camera readout time of a single image.


Assuntos
Caenorhabditis elegans/citologia , Rastreamento de Células , Imageamento Tridimensional/métodos , Microscopia de Fluorescência , Neurônios/citologia , Saccharomyces cerevisiae/citologia , Animais , Neoplasias Ósseas/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Osteossarcoma/enzimologia , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Methods Mol Biol ; 507: 281-303, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18987822

RESUMO

MethylQuant is a cost-effective and relatively simple technique which enables quantitative analysis of the methylation status of a single cytosine at specific positions in DNA that can be assimilated to the quantitative detection of a single nucleotide polymorphism (SNP). After bisulfite conversion of DNA and PCR amplification of the region of interest, the methylation status is quantified by methylation-specific real-time PCR with one of the primers harboring the methylation status-specific nucleotide at the most 3' end. In parallel, the amount of amplifiable DNA is quantified by a methylation-independent real-time PCR. In this protocol, we describe in detail the different stages of the MethylQuant procedure and discuss the parameters of DNA bisulfite conversion and quantitative PCR analysis with SYBR green that are crucial to achieve an accurate quantification of the methylation status of a particular cytosine. The practical aspects of DNA bisulfite conversion, primer design, and quantitative PCR analysis, discussed hereafter, should be of general interest even outside the context of the MethylQuant technique.


Assuntos
Citosina/química , Metilação de DNA , DNA/química , Reação em Cadeia da Polimerase/métodos , Ilhas de CpG , DNA/análise , DNA/genética , Primers do DNA , Polimorfismo de Nucleotídeo Único , Sulfitos
20.
FEBS J ; 274(17): 4643-53, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17697116

RESUMO

Mxi1 belongs to the Myc-Max-Mad transcription factor network. Two Mxi1 protein isoforms, Mxi1-SRalpha and Mxi1-SRbeta, have been described as sharing many biological properties. Here, we assign differential functions to these isoforms with respect to two distinct levels of Myc antagonism. Unlike Mxi1-SRbeta, Mxi1-SRalpha is not a potent suppressor of the cellular transformation activity of Myc. Furthermore, although Mxi1-SRbeta exhibits a repressive effect on the MYC promoter in transient expression assays, Mxi1-SRalpha activates this promoter. A specific domain of Mxi1-SRalpha contributes to these differences. Moreover, glyceraldehyde-3-phosphate dehydrogenase interacts with Mxi1-SRalpha and enhances its ability to activate the Myc promoter. Our findings suggest that Mxi1 gains functional complexity by encoding isoforms with shared and distinct activities.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , DNA Complementar , Eletroforese em Gel de Poliacrilamida , Evolução Molecular , Imunofluorescência , Humanos , Espectrometria de Massas , Ornitina Descarboxilase/genética , Plasmídeos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...