Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(10): e0256707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34669722

RESUMO

Understanding the rates and patterns of tidal wetland elevation changes relative to sea-level is essential for understanding the extent of potential wetland loss over the coming years. Using an enhanced and more flexible modeling framework of an ecosystem model (WARMER-2), we explored sea-level rise (SLR) impacts on wetland elevations and carbon sequestration rates through 2100 by considering plant community transitions, salinity effects on productivity, and changes in sediment availability. We incorporated local experimental results for plant productivity relative to inundation and salinity into a species transition model, as well as site-level estimates of organic matter decomposition. The revised modeling framework includes an improved calibration scheme that more accurately reconstructs soil profiles and incorporates parameter uncertainty through Monte Carlo simulations. Using WARMER-2, we evaluated elevation change in three tidal wetlands in the San Francisco Bay Estuary, CA, USA along an estuarine tidal and salinity gradient with varying scenarios of SLR, salinization, and changes in sediment availability. We also tested the sensitivity of marsh elevation and carbon accumulation rates to different plant productivity functions. Wetland elevation at all three sites was sensitive to changes in sediment availability, but sites with greater initial elevations or space for upland transgression persisted longer under higher SLR rates than sites at lower elevations. Using a multi-species wetland vegetation transition model for organic matter contribution to accretion, WARMER-2 projected increased elevations relative to sea levels (resilience) and higher rates of carbon accumulation when compared with projections assuming no future change in vegetation with SLR. A threshold analysis revealed that all three wetland sites were likely to eventually transition to an unvegetated state with SLR rates above 7 mm/yr. Our results show the utility in incorporating additional estuary-specific parameters to bolster confidence in model projections. The new WARMER-2 modeling framework is widely applicable to other tidal wetland ecosystems and can assist in teasing apart important drivers of wetland elevation change under SLR.


Assuntos
Sequestro de Carbono/fisiologia , Carbono/análise , Aquecimento Global/estatística & dados numéricos , Elevação do Nível do Mar/estatística & dados numéricos , Áreas Alagadas , Baías , Modelos Teóricos , Salinidade , São Francisco , Solo/química , Ondas de Maré
2.
Mol Ecol ; 28(24): 5203-5216, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31736171

RESUMO

Interspecific hybridization is recognized as an important process in the evolutionary dynamics of both speciation and the reversal of speciation. However, our understanding of the spatial and temporal patterns of hybridization that erode versus promote species boundaries is incomplete. The endangered, endemic koloa maoli (or Hawaiian duck, Anas wyvilliana) is thought to be threatened with genetic extinction through ongoing hybridization with an introduced congener, the feral mallard (A. platyrhynchos). We investigated spatial and temporal variation in hybrid prevalence in populations throughout the main Hawaiian Islands, using genomic data to characterize population structure of koloa, quantify the extent of hybridization, and compare hybrid proportions over time. To accomplish this, we genotyped 3,308 double-digest restriction-site-associated DNA (ddRAD) loci in 425 putative koloa, mallards, and hybrids from populations across the main Hawaiian Islands. We found that despite a population decline in the last century, koloa genetic diversity is high. There were few hybrids on the island of Kaua'i, home to the largest population of koloa. By contrast, we report that sampled populations outside of Kaua'i can now be characterized as hybrid swarms, in that all individuals sampled were of mixed koloa × mallard ancestry. Further, there is some evidence that these swarms are stable over time. These findings demonstrate spatial variation in the extent and consequences of interspecific hybridization, and highlight how islands or island-like systems with small population sizes may be especially prone to genetic extinction when met with a congener that is not reproductively isolated.


Assuntos
Patos/genética , Evolução Molecular , Variação Genética/genética , Hibridização Genética , Animais , Evolução Biológica , DNA/genética , Espécies em Perigo de Extinção , Genótipo , Havaí , Ilhas
3.
Conserv Biol ; 20(6): 1584-94, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17181793

RESUMO

The U.S. Endangered Species Act (ESA) allows listing of subspecies and other groupings below the rank of species. This provides the U.S. Fish and Wildlife Service and the National Marine Fisheries Service with a means to target the most critical unit in need of conservation. Although roughly one-quarter of listed taxa are subspecies, these management agencies are hindered by uncertainties about taxonomic standards during listing or delisting activities. In a review of taxonomic publications and societies, we found few subspecies lists and none that stated standardized criteria for determining subspecific taxa. Lack of criteria is attributed to a centuries-old debate over species and subspecies concepts. Nevertheless, the critical need to resolve this debate for ESA listings led us to propose that minimal biological criteria to define disjunct subspecies (legally or taxonomically) should include the discreteness and significance criteria of distinct population segments (as defined under the ESA). Our subspecies criteria are in stark contrast to that proposed by supporters of the phylogenetic species concept and provide a clear distinction between species and subspecies. Efforts to eliminate or reduce ambiguity associated with subspecies-level classifications will assist with ESA listing decisions. Thus, we urge professional taxonomic societies to publish and periodically update peer-reviewed species and subspecies lists. This effort must be paralleled throughout the world for efficient taxonomic conservation to take place.


Assuntos
Classificação , Conservação dos Recursos Naturais/legislação & jurisprudência , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Extinção Biológica , Regulamentação Governamental , Filogenia , Especificidade da Espécie , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA