Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770575

RESUMO

We describe a new approach to making ultrathin Ag nanoshells with a higher level of extinction in the infrared than in the visible. The combination of near-infrared active ultrathin nanoshells with their isotropic optical properties is of interest for energy-saving applications. For such applications, the morphology must be precisely controlled, since the optical response is sensitive to nanometer-scale variations. To achieve this precision, we use a multi-step, reproducible, colloidal chemical synthesis. It includes the reduction of Tollens' reactant onto Sn2+-sensitized silica particles, followed by silver-nitrate reduction by formaldehyde and ammonia. The smooth shells are about 10 nm thick, on average, and have different morphologies: continuous, percolated, and patchy, depending on the quantity of the silver nitrate used. The shell-formation mechanism, studied by optical spectroscopy and high-resolution microscopy, seems to consist of two steps: the formation of very thin and flat patches, followed by their guided regrowth around the silica particle, which is favored by a high reaction rate. The optical and thermal properties of the core-shell particles, embedded in a transparent poly(vinylpyrrolidone) film on a glass substrate, were also investigated. We found that the Ag-nanoshell films can convert 30% of the power of incident near-infrared light into heat, making them very suitable in window glazing for radiative screening from solar light.

2.
Beilstein J Nanotechnol ; 14: 52-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36703910

RESUMO

Particles with attractive patches are appealing candidates to be used as building units to fabricate novel colloidal architectures by self-assembly. Here, we report the synthesis of one-patch silica nanoparticles, which consist of silica half-spheres whose concave face carries in its center a polymeric patch made of grafted polystyrene chains. The multistage synthesis allows for a fine control of the patch-to-particle size ratio from 0.23 to 0.57. The assembly of the patchy nanoparticles can be triggered by reducing the solvent quality for the polystyrene chains. Dimers or trimers can be obtained by tuning the patch-to-particle size ratio. When mixed with two-patch nanoparticles, one-patch nanoparticles control the length of the resulting chains by behaving as colloidal chain stoppers. The present strategy allows for future elaboration of novel colloidal structures by controlled assembly of nanoparticles.

3.
ACS Macro Lett ; 11(1): 156-160, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574797

RESUMO

The self-assembly of patchy nanosized building blocks is an efficient strategy for producing highly organized materials. Herein we report the chaining of divalent silica nanoparticles with polystyrene patches dispersed in tetrahydrofuran triggered by lowering the solvent quality. We study the influence of the patch-to-particle size ratio and show that the nature of the added nonsolvent, for example, ethanol, water, or salty water, and its volume fraction should be carefully adjusted. We demonstrate that colloidal assembly initially obeys the kinetic model of step-growth polymerization and that beyond a certain length, the chains have the possibility to cyclize. We also show that the length of the chains can be controlled by the addition of one-patch silica nanoparticles, which act as colloidal analogues of chain stoppers.


Assuntos
Nanopartículas , Dióxido de Silício , Coloides , Tamanho da Partícula , Água
4.
Nanoscale ; 14(9): 3324-3345, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35174843

RESUMO

Monolayers of assembled nano-objects with a controlled degree of disorder hold interest in many optical applications, including photovoltaics, light emission, sensing, and structural coloration. Controlled disorder can be achieved through either top-down or bottom-up approaches, but the latter is more suited to large-scale, low-cost fabrication. Disordered colloidal monolayers can be assembled through evaporatively driven convective assembly, a bottom-up process with a wide range of parameters impacting particle placement. Motivated by the photonic applications of such monolayers, in this review we discuss the quantification of monolayer disorder, and the assembly methods that have been used to produce them. We review the impact of particle and solvent properties, as well as the use of substrate patterning, to create the desired spatial distributions of particles.

5.
Mater Horiz ; 8(2): 565-570, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821272

RESUMO

We describe a new approach to making plasmonic metamolecules with well-controlled resonances at optical wavelengths. Metamolecules are highly symmetric, subwavelength-scale clusters of metal and dielectric. They are of interest for metafluids, isotropic optical materials with applications in imaging and optical communications. For such applications, the morphology must be precisely controlled: the optical response is sensitive to nanometer-scale variations in the thickness of metal coatings and the distances between metal surfaces. To achieve this precision, we use a multi-step colloidal synthesis approach. Starting from highly monodisperse silica seeds, we grow octahedral clusters of polystyrene spheres using seeded-growth emulsion polymerization. We then overgrow the silica and remove the polystyrene to create a dimpled template. Finally, we attach six silica satellites to the template and coat them with gold. Using single-cluster spectroscopy, we show that the plasmonic resonances are reproducible from cluster to cluster. By comparing the spectra to theory, we show that the multi-step synthesis approach can control the distances between metallic surfaces to nanometer-scale precision. More broadly, our approach shows how metamolecules can be produced in bulk by combining different, high-yield colloidal synthesis steps, analogous to how small molecules are produced by multi-step chemical reactions.

6.
Sci Rep ; 11(1): 17831, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497277

RESUMO

Nanoshells made of a silica core and a gold shell possess an optical response that is sensitive to nanometer-scale variations in shell thickness. The exponential red shift of the plasmon resonance with decreasing shell thickness makes ultrathin nanoshells (less than 10 nm) particularly interesting for broad and tuneable ranges of optical properties. Nanoshells are generally synthesised by coating gold onto seed-covered silica particles, producing continuous shells with a lower limit of 15 nm, due to an inhomogeneous droplet formation on the silica surface during the seed regrowth. In this paper, we investigate the effects of three variations of the synthesis protocol to favour ultrathin nanoshells: seed density, polymer additives and microwave treatment. We first maximised gold seed density around the silica core, but surprisingly its effect is limited. However, we found that the addition of polyvinylpyrrolidone during the shell synthesis leads to higher homogeneity and a thinner shell and that a post-synthetic thermal treatment using microwaves can further smooth the particle surface. This study brings new insights into the synthesis of metallic nanoshells, pushing the limits of ultrathin shell synthesis.

7.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443324

RESUMO

We report a fabrication route of silica nanoparticles with two, three or six patches with an easily tunable patch-to-particle size ratio. The synthetic pathway includes two main stages: the synthesis of silica/polystyrene multipod-like templates and the selective growth of their silica core through an iterative approach. Electron microscopy of the dimpled nanoparticles obtained after dissolution of the polystyrene nodules of the multipod-like nanoparticles provides evidence of the conformational growth of the silica core. Thanks to the presence of some polymer chains, which remained grafted at the bottom of the dimples after the dissolution of the PS nodules, the solvent-induced assembly of the patchy nanoparticles is performed. Chains, hexagonal suprastructures and cubic lattices are obtained from the assembly of two-, three- and six-patch silica nanoparticles, respectively. Our study can guide future work in both patchy nanoparticle synthesis and self-assembly. It also opens new routes towards the fabrication of specific classes of one-, two- and three-dimensional colloidal lattices, including complex tilings.

8.
Nano Lett ; 21(5): 2046-2052, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33599504

RESUMO

The design and chemical synthesis of plasmonic nanoresonators exhibiting a strong magnetic response in the visible is a key requirement to the realization of efficient functional and self-assembled metamaterials. However, novel applications like Huygens' metasurfaces or mu-near-zero materials require stronger magnetic responses than those currently reported. Our numerical simulations demonstrate that the specific dodecahedral morphology, whereby 12 silver satellites are located on the faces of a nanosized dielectric dodecahedron, provides sufficiently large electric and magnetic dipolar and quadrupolar responses that interfere to produce so-called generalized Huygens' sources, fulfilling the generalized Kerker condition. Using a multistep colloidal engineering approach, we synthesize highly symmetric plasmonic nanoclusters with a controlled silver satellite size and show that they exhibit a strong forward scattering that may be used in various applications such as metasurfaces or perfect absorbers.

9.
Nanoscale Horiz ; 6(4): 311-318, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439184

RESUMO

Highly symmetrical gold nanocages can be produced with a controllable number of circular windows of either 2, 3, 4, 6 or 12 via an original fabrication route. The synthetic pathway includes three main stages: the synthesis of silica/polystyrene multipod templates, the regioselective seeded growth of a gold shell on the unmasked part of the silica surface and the development of gold nanocages by dissolving/etching the templates. Electron microscopy and tomography provide evidence of the symmetrical features of the as-obtained nanostructures. The optical properties of nanocages with 4 and 12 windows were measured at the single particle level by spatial modulation spectroscopy and correlated with numerical simulations based on finite-element modeling. The new multi-step synthesis approach reported here also allows the synthesis of rattle-like nanostructures through filling of the nanocages with a guest nano-object. With the potential to adjust the chemical composition, size and geometry of both the guest particle and the host cage, it opens new routes towards the fabrication of hollow nanostructures of high interest for a variety of applications including sensing devices, catalytic reactors and biomedicine.

10.
Nanomaterials (Basel) ; 11(1)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435290

RESUMO

Fabricating future materials by self-assembly of nano-building blocks programmed to generate specific lattices is among the most challenging goals of nanotechnology and has led to the recent concept of patchy particles. We report here a simple strategy to fabricate polystyrene nanoparticles with several silica patches based on the solvent-induced self-assembly of silica/polystyrene monopods. The latter are obtained with morphological yields as high as 99% by seed-growth emulsion polymerization of styrene in the presence of 100 nm silica seeds previously modified with an optimal surface density of methacryloxymethyl groups. In addition, we fabricate "magnetic" silica seeds by silica encapsulation of preformed maghemite supraparticles. The polystyrene pod, i.e., surface nodule, serves as a sticky point when the monopods are incubated in a bad/good solvent mixture for polystyrene, e.g., ethanol/tetrahydrofuran mixtures. After self-assembly, mixtures of particles with two, three, four silica or magnetic silica patches are mainly obtained. The influence of experimental parameters such as the ethanol/tetrahydrofuran volume ratio, monopod concentration and incubation time is studied. Further developments would consist of obtaining pure batches by centrifugal sorting and optimizing the relative position of the patches in conventional repulsion figures.

11.
RSC Adv ; 11(3): 1343-1353, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35424114

RESUMO

We report the synthesis of nanocomposites made of silica nanoparticles whose six surface dimples are decorated with magnetic maghemite nanoparticles and their use for detection and recovery of arsenic in aqueous media. Precursor silica nanoparticles have aminated polystyrene chains at the bottom of their dimples and the maghemite nanoparticles are surface functionalized with carboxylic acid groups in two steps: amination with 3-aminopropyltrimethoxysilane, then derivatization with succinic anhydride in the presence of triethylamine. In the end, the colloidal assembly consists of the regioselective grafting of the carboxylic acid-modified iron oxide nanoparticles onto the 6-dimple silica nanoparticles. Several characterization techniques such as transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) are employed to assess the grafting process and study the influence of the maghemite functional groups on the quality of the composites formed. The resulting magnetic nanocomposites are used for the environmentally benign detection and removal of arsenic from aqueous medium, being readily extracted through means of magnetic separation.

12.
Nanomaterials (Basel) ; 12(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35010053

RESUMO

We report the synthesis and solvent-induced assembly of one-patch silica nanoparticles in the size range of 100-150 nm. They consisted, as a first approximation, of silica half-spheres of which the truncated face was itself concave and carried in its center a polymeric patch made of grafted polystyrene chains. The multistage synthesis led to 98% pure batches and allowed a fine control of the patch-to-particle size ratio from 0.69 to 1.54. The self-assembly was performed in equivolume mixtures of tetrahydrofuran and ethanol, making the polymeric patches sticky and ready to coalesce together. The assembly kinetics was monitored by collecting samples over time and analyzing statistically their TEM images. Small clusters, such as dimers, trimers, and tetramers, were formed initially and then evolved in part into micelles. Accordingly to previous simulation studies, more or less branched wormlike chains and planar bilayers were observed in the long term, when the patch-to-particle size ratio was high enough. We focused also on the experimental conditions that could allow preparing small clusters in a good morphology yield.

13.
Chem Soc Rev ; 49(6): 1955-1976, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32108182

RESUMO

This review describes the latest advances in the synthesis and assembly of specific colloids such as the colloidal molecules as defined by van Blaaderen in 2003 and the patchy particles imagined a few years later. The two concepts are closely related because some may serve as precursors of others and vice versa. To best mimic the molecular structures, it is necessary to introduce the notions of directed binding and valence which result in the concept of patches arranged on the particle surface according to the conventional repulsion figures. The assembly of patchy particles has made it possible to reconstitute molecules and macromolecules of simple geometry. But the existence of extended assemblies of larger dimensions has been demonstrated mostly by simulation and it struggles experimentally with the purity of the batches of building blocks.

14.
J Colloid Interface Sci ; 560: 639-648, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31704001

RESUMO

We report a quite simple strategy to assemble silica/polystyrene dumbbell-shaped nanoparticles into clusters with an aggregation number from two to more than 30. The polystyrene lobe serves as a patch that is made sticky and ready to merge with similar ones when the dumbbells are dispersed in an ethanol/DMF mixture. Thanks to transmission electron microscopy experiments, we describe qualitatively and quantitatively the influence of several experimental parameters such as the solvent quality, i.e. DMF fraction, and the patch-to-particle size ratio. We show that the DMF fraction range (30-50 vol%) for the sticky regime can be extended if the incubation process is completed by a centrifugation step. We also demonstrate an unexpected evolution in the average aggregation number with the patch-to-particle size ratio that may be explained by the molar mass distribution within the polystyrene core of the clusters. Lastly, we show that this assembly route may be extended to gold-coated clusters.

15.
Chem Asian J ; 14(19): 3232-3239, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31436370

RESUMO

The synthesis and study of colloidal molecules, that is to say clusters of a small number of colloidal entities that resemble the configuration of atoms in molecules both in constituent size and angular arrangement to that of valence shell electron pair repulsion model-related space-filling geometries, are of continued and significant interest. The rapid development in this research area has attracted intense interest from researchers with diverse expertise, and numerous methods towards the synthesis of colloidal molecules have been reported. In this Minireview, we attempt to give an overview of these latest developments, classifying them in processes based on controlled phase separation phenomena, on controlled surface nucleation and growth, and on controlled clustering. We also discuss the potential use of colloidal molecules as building blocks to fabricate new hierarchically organized superstructures and functional materials.

16.
Beilstein J Nanotechnol ; 9: 2989-2998, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30591847

RESUMO

We report a new route to synthesize clusters, or so-called colloidal molecules (CMs), which mimic the symmetry of molecular structures made of one central atom. We couple site-specifically functionalized patchy nanoparticles, i.e., valence-endowed colloidal atoms (CAs), with complementary nanospheres through amide bonds. By analogy with the Gillespie formalism, we show that AX4, AX3E1 and AX2E2 CMs can be obtained from tetravalent sp3-like CAs when the relative amount of both building units is varied in a controlled manner. We obtain AX2 CMs from divalent sp-like CAs. We also show that it is possible to covalently attach two different types of satellites to the same central patchy nanoparticle to create more complex CMs, opening the way to the fabrication of new multifunctional nanostructures with well-controlled shape and composition.

17.
Angew Chem Int Ed Engl ; 57(48): 15754-15757, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30308118

RESUMO

We demonstrate a simple method to create a variety of silica-based colloidal molecules through the covalent assembly of site-specifically functionalized patchy nanoparticles with complementary nanospheres. Colloidal analogues of BeBr2 , BBr3 and CBr4 are obtained from sp-, sp2 - and sp3 -like particles, while Br2 O and NBr3 analogues can be fabricated by varying the relative amounts of both colloidal precursors. We also show that it is possible to attach covalently silica nanospheres of various sizes to one central patchy nanoparticle, which leads to the formation of more complex colloidal molecules, including chiral ones. The possibility to easily extend the strategy to other colloidal precursors which can serve as satellites, for example, ellipsoidal polymer particles or metallic nanoparticles, opens the way to a rich variety of new colloidal analogues of atoms which could serve as building blocks of next generation materials.

18.
Adv Mater ; 30(27): e1706558, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29740924

RESUMO

Quantum strongly correlated systems that exhibit interesting features in condensed matter physics often need an unachievable temperature or pressure range in classical materials. One solution is to introduce a scaling factor, namely, the lattice parameter. Synthetic heterostructures named superlattices or supracrystals are synthesized by the assembling of colloidal atoms. These include semiconductors, metals, and insulators for the exploitation of their unique properties. Most of them are currently limited to dense packing. However, some of desired properties need to adjust the colloidal atoms neighboring number. Here, the current state of research in nondense packing is summarized, discussing the benefits, outlining possible scenarios and methodologies, describing examples reported in the literature, briefly discussing the challenges, and offering preliminary conclusions. Penetrating such new and intriguing research fields demands a multidisciplinary approach accounting for the coupling of statistic physics, solid state and quantum physics, chemistry, computational science, and mathematics. Standard interactions between colloidal atoms and emerging fields, such as the use of Casimir forces, are reported. In particular, the focus is on the novelty of patchy colloidal atoms to meet this challenge.

19.
Chemistry ; 24(27): 6917-6921, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29534315

RESUMO

Original titania nanocages are fabricated from sacrificial silica/polystyrene tetrapod-like templates. Here the template synthesis, titania deposition and nanocage development through polystyrene dissolution and subsequent silica etching are described. Discussion about the competitive deposition of titania on the biphasic templates is particularly emphasized. The morphology of the nanocages is investigated by TEM, STEM, EDX mapping and electron tomography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...