Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
JAMA Surg ; 159(3): 248-259, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091011

RESUMO

Importance: Traumatic brain injury (TBI) is associated with persistent functional and cognitive deficits, which may be susceptible to secondary insults. The implications of exposure to surgery and anesthesia after TBI warrant investigation, given that surgery has been associated with neurocognitive disorders. Objective: To examine whether exposure to extracranial (EC) surgery and anesthesia is related to worse functional and cognitive outcomes after TBI. Design, Setting, and Participants: This study was a retrospective, secondary analysis of data from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study, a prospective cohort study that assessed longitudinal outcomes of participants enrolled at 18 level I US trauma centers between February 1, 2014, and August 31, 2018. Participants were 17 years or older, presented within 24 hours of trauma, were admitted to an inpatient unit from the emergency department, had known Glasgow Coma Scale (GCS) and head computed tomography (CT) status, and did not undergo cranial surgery. This analysis was conducted between January 2, 2020, and August 8, 2023. Exposure: Participants who underwent EC surgery during the index admission were compared with participants with no surgery in groups with a peripheral orthopedic injury or a TBI and were classified as having uncomplicated mild TBI (GCS score of 13-15 and negative CT results [CT- mTBI]), complicated mild TBI (GCS score of 13-15 and positive CT results [CT+ mTBI]), or moderate to severe TBI (GCS score of 3-12 [m/sTBI]). Main Outcomes and Measures: The primary outcomes were functional limitations quantified by the Glasgow Outcome Scale-Extended for all injuries (GOSE-ALL) and brain injury (GOSE-TBI) and neurocognitive outcomes at 2 weeks and 6 months after injury. Results: A total of 1835 participants (mean [SD] age, 42.2 [17.8] years; 1279 [70%] male; 299 Black, 1412 White, and 96 other) were analyzed, including 1349 nonsurgical participants and 486 participants undergoing EC surgery. The participants undergoing EC surgery across all TBI severities had significantly worse GOSE-ALL scores at 2 weeks and 6 months compared with their nonsurgical counterparts. At 6 months after injury, m/sTBI and CT+ mTBI participants who underwent EC surgery had significantly worse GOSE-TBI scores (B = -1.11 [95% CI, -1.53 to -0.68] in participants with m/sTBI and -0.39 [95% CI, -0.77 to -0.01] in participants with CT+ mTBI) and performed worse on the Trail Making Test Part B (B = 30.1 [95% CI, 11.9-48.2] in participants with m/sTBI and 26.3 [95% CI, 11.3-41.2] in participants with CT+ mTBI). Conclusions and Relevance: This study found that exposure to EC surgery and anesthesia was associated with adverse functional outcomes and impaired executive function after TBI. This unfavorable association warrants further investigation of the potential mechanisms and clinical implications that could inform decisions regarding the timing of surgical interventions in patients after TBI.


Assuntos
Anestesia , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Masculino , Adulto , Feminino , Estudos Prospectivos , Estudos Retrospectivos
3.
World Neurosurg ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37121503

RESUMO

BACKGROUND: Pediatric cranial trauma is the leading cause of acquired death and disability in children worldwide. However, trauma resources vary widely among countries. We sought to compare management and timely access to care between a level 1 U.S. pediatric trauma center and a tertiary referral hospital in a lower-middle-income country to assess whether system and resource differences influence care and outcomes. METHODS: We compared data from 214 pediatric head trauma admissions to Philippine General Hospital (Manila) with 136 children from the TRACK-TBI pediatrics study cohort at Massachusetts General Hospital (MGH). Admitted MGH patients were compared with the Philippine cohort regarding demographics; mechanism of injury; times to neurosurgical consult, imaging, and surgery; in-hospital mortality; and length of hospitalization. RESULTS: Age (9 years), gender distribution (67% male), and presenting Glasgow Coma Scale scores were similar (P = 0.10) between sites. More children had intracranial injury in the Philippine cohort (73% vs. 60%; n = 319) and more underwent neurosurgery (27% vs. 4%). Times to consult, imaging, and surgery were longer in the Philippines (12.3 vs. 6.5, 12.0 vs. 2.8, and 45.4 vs. 5.6 hours, respectively). In-hospital mortality across all admissions was similar between cohorts (3% vs. 0%; P = 0.09), but significantly higher in the most severe Philippines cases (31% vs. 0%, P=0.04). Length of stay was longer (5 vs. 2 days; P < 0.001) in the Philippine cohort. CONCLUSIONS: High-income country status correlated with faster care, shorter hospitalizations, and better outcomes among severe cases. Prompt care through sophisticated trauma system implementation may improve pediatric health in resource-limited settings.

4.
J Clin Med ; 12(5)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902811

RESUMO

INTRODUCTION: Neuroworsening may be a sign of progressive brain injury and is a factor for treatment of traumatic brain injury (TBI) in intensive care settings. The implications of neuroworsening for clinical management and long-term sequelae of TBI in the emergency department (ED) require characterization. METHODS: Adult TBI subjects from the prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study with ED admission and disposition Glasgow Coma Scale (GCS) scores were extracted. All patients received head computed tomography (CT) scan <24 h post-injury. Neuroworsening was defined as a decline in motor GCS at ED disposition (vs. ED admission). Clinical and CT characteristics, neurosurgical intervention, in-hospital mortality, and 3- and 6-month Glasgow Outcome Scale-Extended (GOS-E) scores were compared by neuroworsening status. Multivariable regressions were performed for neurosurgical intervention and unfavorable outcome (GOS-E ≤ 3). Multivariable odds ratios (mOR) with [95% confidence intervals] were reported. RESULTS: In 481 subjects, 91.1% had ED admission GCS 13-15 and 3.3% had neuroworsening. All neuroworsening subjects were admitted to intensive care unit (vs. non-neuroworsening: 26.2%) and were CT-positive for structural injury (vs. 45.4%). Neuroworsening was associated with subdural (75.0%/22.2%), subarachnoid (81.3%/31.2%), and intraventricular hemorrhage (18.8%/2.2%), contusion (68.8%/20.4%), midline shift (50.0%/2.6%), cisternal compression (56.3%/5.6%), and cerebral edema (68.8%/12.3%; all p < 0.001). Neuroworsening subjects had higher likelihoods of cranial surgery (56.3%/3.5%), intracranial pressure (ICP) monitoring (62.5%/2.6%), in-hospital mortality (37.5%/0.6%), and unfavorable 3- and 6-month outcome (58.3%/4.9%; 53.8%/6.2%; all p < 0.001). On multivariable analysis, neuroworsening predicted surgery (mOR = 4.65 [1.02-21.19]), ICP monitoring (mOR = 15.48 [2.92-81.85], and unfavorable 3- and 6-month outcome (mOR = 5.36 [1.13-25.36]; mOR = 5.68 [1.18-27.35]). CONCLUSIONS: Neuroworsening in the ED is an early indicator of TBI severity, and a predictor of neurosurgical intervention and unfavorable outcome. Clinicians must be vigilant in detecting neuroworsening, as affected patients are at increased risk for poor outcomes and may benefit from immediate therapeutic interventions.

5.
J Neurosurg Pediatr ; : 1-14, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36883640

RESUMO

OBJECTIVE: The authors of this study evaluated the safety and efficacy of stereotactic laser ablation (SLA) for the treatment of drug-resistant epilepsy (DRE) in children. METHODS: Seventeen North American centers were enrolled in the study. Data for pediatric patients with DRE who had been treated with SLA between 2008 and 2018 were retrospectively reviewed. RESULTS: A total of 225 patients, mean age 12.8 ± 5.8 years, were identified. Target-of-interest (TOI) locations included extratemporal (44.4%), temporal neocortical (8.4%), mesiotemporal (23.1%), hypothalamic (14.2%), and callosal (9.8%). Visualase and NeuroBlate SLA systems were used in 199 and 26 cases, respectively. Procedure goals included ablation (149 cases), disconnection (63), or both (13). The mean follow-up was 27 ± 20.4 months. Improvement in targeted seizure type (TST) was seen in 179 (84.0%) patients. Engel classification was reported for 167 (74.2%) patients; excluding the palliative cases, 74 (49.7%), 35 (23.5%), 10 (6.7%), and 30 (20.1%) patients had Engel class I, II, III, and IV outcomes, respectively. For patients with a follow-up ≥ 12 months, 25 (51.0%), 18 (36.7%), 3 (6.1%), and 3 (6.1%) had Engel class I, II, III, and IV outcomes, respectively. Patients with a history of pre-SLA surgery related to the TOI, a pathology of malformation of cortical development, and 2+ trajectories per TOI were more likely to experience no improvement in seizure frequency and/or to have an unfavorable outcome. A greater number of smaller thermal lesions was associated with greater improvement in TST. Thirty (13.3%) patients experienced 51 short-term complications including malpositioned catheter (3 cases), intracranial hemorrhage (2), transient neurological deficit (19), permanent neurological deficit (3), symptomatic perilesional edema (6), hydrocephalus (1), CSF leakage (1), wound infection (2), unplanned ICU stay (5), and unplanned 30-day readmission (9). The relative incidence of complications was higher in the hypothalamic target location. Target volume, number of laser trajectories, number or size of thermal lesions, or use of perioperative steroids did not have a significant effect on short-term complications. CONCLUSIONS: SLA appears to be an effective and well-tolerated treatment option for children with DRE. Large-volume prospective studies are needed to better understand the indications for treatment and demonstrate the long-term efficacy of SLA in this population.

6.
J Cutan Pathol ; 50(7): 653-660, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36700349

RESUMO

BACKGROUND: Encephaloceles are neural tube defects characterized by herniation of meninges, neural tissue and cerebrospinal fluid, while atretic cephaloceles denote a rudimentary connection to the intracranial space with absence of herniated neural tissue and represent an infrequent dermatopathologic diagnosis. Limited reports of these entities confound the challenge in their histopathologic distinction. Accurate classification is important given associated anomalies and neurologic manifestations that impact prognosis. METHODS: We describe the clinicopathological and immunohistochemical [glial fibrillary acidic protein (GFAP), S100, epithelial membrane antigen (EMA), and somatostatin receptor subtype 2A (SSTR2A)] features in a retrospective series encountered at a single institution between 1994 and 2020. RESULTS: We identified 13 cases classified as atretic cephalocele (n = 11) and encephalocele (n = 2). Hamartomatous changes and multinucleated cells were unique to atretic cephaloceles while myxoid areas were unique to encephaloceles. At least focal staining for SSTRA was seen in all atretic cephaloceles with the majority (87.5%) staining for EMA; negative staining for GFAP and S100 confirmed absence of neural tissue. Encephaloceles were GFAP and S100 positive, and negative for SSTR2 and EMA. Atretic cephaloceles had a favorable prognosis compared to encephaloceles, with severe morbidity present in both encephalocele cases. CONCLUSION: Our study raises awareness of atretic cephalocele and encephalocele among dermatopathologists and reveals a mutually exclusive immunophenotype that facilitates their distinction for prognostication and management.


Assuntos
Encefalocele , Meninges , Humanos , Encefalocele/patologia , Estudos Retrospectivos , Meninges/patologia , Prognóstico
8.
eNeuro ; 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35697513

RESUMO

To date, post-traumatic epilepsy (PTE) research in large animal models has been limited. Recent advances in neocortical microscopy have made possible new insights into neocortical PTE. However, it is very difficult to engender convincing neocortical PTE in rodents. Thus, large animal models that develop neocortical PTE may provide useful insights that also can be more comparable to human patients. Because gyrencephalic species have prolonged latent periods, long-term video EEG recording is required. Here, we report a fully subcutaneous EEG implant with synchronized video in freely ambulatory swine for up to 13 months during epileptogenesis following bilateral cortical impact injuries or sham surgery The advantages of this system include the availability of a commercially available system that is simple to install, a low failure rate after surgery for EEG implantation, radiotelemetry that enables continuous monitoring of freely ambulating animals, excellent synchronization to video to EEG, and a robust signal to noise ratio. The disadvantages of this system in this species and age are the accretion of skull bone which entirely embedded a subset of skull screws and EEG electrodes, and the inability to rearrange the EEG electrode array. These disadvantages may be overcome by splicing a subdural electrode strip to the electrode leads so that skull growth is less likely to interfere with long-term signal capture and by placing two implants for a more extensive montage. This commercially available system in this bilateral cortical impact swine model may be useful to a wide range of investigators studying epileptogenesis in PTE.SignificancePost-traumatic epilepsy (PTE) is a cause of significant morbidity after traumatic brain injury (TBI) and is often drug-resistant. Robust, informative animal models would greatly facilitate PTE research. Ideally, this biofidelic model of PTE would utilize a species that approximates human brain anatomy, brain size, glial populations, and inflammatory pathways. An ideal model would also incorporate feasible methods for long-term video EEG recording required to quantify seizure activity. Here, we describe the first model of PTE in swine and describe a method for robust long-term video EEG monitoring for up to 13 months post-TBI. The relatively easy "out-of-the-box" radiotelemetry system and surgical techniques described here will be adaptable by a wide array of investigators studying the pathogenesis and treatment of PTE.

9.
JAMA Netw Open ; 4(12): e2140191, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34964854

RESUMO

Importance: Posttraumatic epilepsy (PTE) is a recognized sequela of traumatic brain injury (TBI), but the long-term outcomes associated with PTE independent of injury severity are not precisely known. Objective: To determine the incidence, risk factors, and association with functional outcomes and self-reported somatic, cognitive, and psychological concerns of self-reported PTE in a large, prospectively collected TBI cohort. Design, Setting, and Participants: This multicenter, prospective cohort study was conducted as part of the Transforming Research and Clinical Knowledge in Traumatic Brain Injury study and identified patients presenting with TBI to 1 of 18 participating level 1 US trauma centers from February 2014 to July 2018. Patients with TBI, extracranial orthopedic injuries (orthopedic controls), and individuals without reported injuries (eg, friends and family of participants; hereafter friend controls) were prospectively followed for 12 months. Data were analyzed from January 2020 to April 2021. Exposure: Demographic, imaging, and clinical information was collected according to TBI Common Data Elements. Incidence of self-reported PTE was assessed using the National Institute of Neurological Disorders and Stroke Epilepsy Screening Questionnaire (NINDS-ESQ). Main Outcomes and Measures: Primary outcomes included Glasgow Outcome Scale Extended, Rivermead Cognitive Metric (RCM; derived from the Rivermead Post Concussion Symptoms Questionnaire), and the Brief Symptom Inventory-18 (BSI). Results: Of 3296 participants identified as part of the study, 3044 met inclusion criteria, and 1885 participants (mean [SD] age, 41.3 [17.1] years; 1241 [65.8%] men and 644 [34.2%] women) had follow-up information at 12 months, including 1493 patients with TBI; 182 orthopedic controls, 210 uninjured friend controls; 41 patients with TBI (2.8%) and no controls had positive screening results for PTE. Compared with a negative screening result for PTE, having a positive screening result for PTE was associated with presenting Glasgow Coma Scale score (8.1 [4.8] vs.13.5 [3.3]; P < .001) as well as with anomalous acute head imaging findings (risk ratio, 6.42 [95% CI, 2.71-15.22]). After controlling for age, initial Glasgow Coma Scale score, and imaging findings, compared with patients with TBI and without PTE, patients with TBI and with positive PTE screening results had significantly lower Glasgow Outcome Scale Extended scores (mean [SD], 6.1 [1.7] vs 4.7 [1.5]; P < .001), higher BSI scores (mean [SD], 50.2 [10.7] vs 58.6 [10.8]; P = .02), and higher RCM scores (mean [SD], 3.1 [2.6] vs 5.3 [1.9]; P = .002) at 12 months. Conclusions and Relevance: In this cohort study, the incidence of self-reported PTE after TBI was found to be 2.8% and was independently associated with unfavorable outcomes. These findings highlight the need for effective antiepileptogenic therapies after TBI.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Epilepsia Pós-Traumática/epidemiologia , Adulto , Estudos de Coortes , Epilepsia Pós-Traumática/etiologia , Feminino , Escala de Coma de Glasgow , Humanos , Incidência , Masculino , Estudos Prospectivos , Fatores de Risco , Autorrelato , Inquéritos e Questionários , Centros de Traumatologia , Estados Unidos/epidemiologia
10.
JAMA Neurol ; 78(8): 982-992, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228047

RESUMO

Importance: Moderate to severe traumatic brain injury (msTBI) is a major cause of death and disability in the US and worldwide. Few studies have enabled prospective, longitudinal outcome data collection from the acute to chronic phases of recovery after msTBI. Objective: To prospectively assess outcomes in major areas of life function at 2 weeks and 3, 6, and 12 months after msTBI. Design, Setting, and Participants: This cohort study, as part of the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study, was conducted at 18 level 1 trauma centers in the US from February 2014 to August 2018 and prospectively assessed longitudinal outcomes, with follow-up to 12 months postinjury. Participants were patients with msTBI (Glasgow Coma Scale scores 3-12) extracted from a larger group of patients with mild, moderate, or severe TBI who were enrolled in TRACK-TBI. Data analysis took place from October 2019 to April 2021. Exposures: Moderate or severe TBI. Main Outcomes and Measures: The Glasgow Outcome Scale-Extended (GOSE) and Disability Rating Scale (DRS) were used to assess global functional status 2 weeks and 3, 6, and 12 months postinjury. Scores on the GOSE were dichotomized to determine favorable (scores 4-8) vs unfavorable (scores 1-3) outcomes. Neurocognitive testing and patient reported outcomes at 12 months postinjury were analyzed. Results: A total of 484 eligible patients were included from the 2679 individuals in the TRACK-TBI study. Participants with severe TBI (n = 362; 283 men [78.2%]; median [interquartile range] age, 35.5 [25-53] years) and moderate TBI (n = 122; 98 men [80.3%]; median [interquartile range] age, 38 [25-53] years) were comparable on demographic and premorbid variables. At 2 weeks postinjury, 36 of 290 participants with severe TBI (12.4%) and 38 of 93 participants with moderate TBI (41%) had favorable outcomes (GOSE scores 4-8); 301 of 322 in the severe TBI group (93.5%) and 81 of 103 in the moderate TBI group (78.6%) had moderate disability or worse on the DRS (total score ≥4). By 12 months postinjury, 142 of 271 with severe TBI (52.4%) and 54 of 72 with moderate TBI (75%) achieved favorable outcomes. Nearly 1 in 5 participants with severe TBI (52 of 270 [19.3%]) and 1 in 3 with moderate TBI (23 of 71 [32%]) reported no disability (DRS score 0) at 12 months. Among participants in a vegetative state at 2 weeks, 62 of 79 (78%) regained consciousness and 14 of 56 with available data (25%) regained orientation by 12 months. Conclusions and Relevance: In this study, patients with msTBI frequently demonstrated major functional gains, including recovery of independence, between 2 weeks and 12 months postinjury. Severe impairment in the short term did not portend poor outcomes in a substantial minority of patients with msTBI. When discussing prognosis during the first 2 weeks after injury, clinicians should be particularly cautious about making early, definitive prognostic statements suggesting poor outcomes and withdrawal of life-sustaining treatment in patients with msTBI.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Atividades Cotidianas , Adulto , Estudos de Coortes , Avaliação da Deficiência , Feminino , Escala de Coma de Glasgow , Escala de Resultado de Glasgow , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estado Vegetativo Persistente , Prognóstico , Estudos Prospectivos , Recuperação de Função Fisiológica , Resultado do Tratamento , Suspensão de Tratamento
11.
JAMA Neurol ; 78(9): 1137-1148, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279565

RESUMO

Importance: A head computed tomography (CT) with positive results for acute intracranial hemorrhage is the gold-standard diagnostic biomarker for acute traumatic brain injury (TBI). In moderate to severe TBI (Glasgow Coma Scale [GCS] scores 3-12), some CT features have been shown to be associated with outcomes. In mild TBI (mTBI; GCS scores 13-15), distribution and co-occurrence of pathological CT features and their prognostic importance are not well understood. Objective: To identify pathological CT features associated with adverse outcomes after mTBI. Design, Setting, and Participants: The longitudinal, observational Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study enrolled patients with TBI, including those 17 years and older with GCS scores of 13 to 15 who presented to emergency departments at 18 US level 1 trauma centers between February 26, 2014, and August 8, 2018, and underwent head CT imaging within 24 hours of TBI. Evaluations of CT imaging used TBI Common Data Elements. Glasgow Outcome Scale-Extended (GOSE) scores were assessed at 2 weeks and 3, 6, and 12 months postinjury. External validation of results was performed via the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Data analyses were completed from February 2020 to February 2021. Exposures: Acute nonpenetrating head trauma. Main Outcomes and Measures: Frequency, co-occurrence, and clustering of CT features; incomplete recovery (GOSE scores <8 vs 8); and an unfavorable outcome (GOSE scores <5 vs ≥5) at 2 weeks and 3, 6, and 12 months. Results: In 1935 patients with mTBI (mean [SD] age, 41.5 [17.6] years; 1286 men [66.5%]) in the TRACK-TBI cohort and 2594 patients with mTBI (mean [SD] age, 51.8 [20.3] years; 1658 men [63.9%]) in an external validation cohort, hierarchical cluster analysis identified 3 major clusters of CT features: contusion, subarachnoid hemorrhage, and/or subdural hematoma; intraventricular and/or petechial hemorrhage; and epidural hematoma. Contusion, subarachnoid hemorrhage, and/or subdural hematoma features were associated with incomplete recovery (odds ratios [ORs] for GOSE scores <8 at 1 year: TRACK-TBI, 1.80 [95% CI, 1.39-2.33]; CENTER-TBI, 2.73 [95% CI, 2.18-3.41]) and greater degrees of unfavorable outcomes (ORs for GOSE scores <5 at 1 year: TRACK-TBI, 3.23 [95% CI, 1.59-6.58]; CENTER-TBI, 1.68 [95% CI, 1.13-2.49]) out to 12 months after injury, but epidural hematoma was not. Intraventricular and/or petechial hemorrhage was associated with greater degrees of unfavorable outcomes up to 12 months after injury (eg, OR for GOSE scores <5 at 1 year in TRACK-TBI: 3.47 [95% CI, 1.66-7.26]). Some CT features were more strongly associated with outcomes than previously validated variables (eg, ORs for GOSE scores <5 at 1 year in TRACK-TBI: neuropsychiatric history, 1.43 [95% CI .98-2.10] vs contusion, subarachnoid hemorrhage, and/or subdural hematoma, 3.23 [95% CI 1.59-6.58]). Findings were externally validated in 2594 patients with mTBI enrolled in the CENTER-TBI study. Conclusions and Relevance: In this study, pathological CT features carried different prognostic implications after mTBI to 1 year postinjury. Some patterns of injury were associated with worse outcomes than others. These results support that patients with mTBI and these CT features need TBI-specific education and systematic follow-up.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/patologia , Recuperação de Função Fisiológica , Adulto , Idoso , Concussão Encefálica/complicações , Estudos de Coortes , Feminino , Humanos , Hemorragias Intracranianas/diagnóstico por imagem , Hemorragias Intracranianas/etiologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Tomografia Computadorizada por Raios X
12.
JAMA Netw Open ; 4(4): e213046, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33822070

RESUMO

Importance: Knowledge of differences in mild traumatic brain injury (mTBI) recovery by sex and age may inform individualized treatment of these patients. Objective: To identify sex-related differences in symptom recovery from mTBI; secondarily, to explore age differences within women, who demonstrate poorer outcomes after TBI. Design, Setting, and Participants: The prospective cohort study Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) recruited 2000 patients with mTBI from February 26, 2014, to July 3, 2018, and 299 patients with orthopedic trauma (who served as controls) from January 26, 2016, to July 27, 2018. Patients were recruited from 18 level I trauma centers and followed up for 12 months. Data were analyzed from August 19, 2020, to March 3, 2021. Exposures: Patients with mTBI (defined by a Glasgow Coma Scale score of 13-15) triaged to head computed tomography in 24 hours or less; patients with orthopedic trauma served as controls. Main Outcomes and Measures: Measured outcomes included (1) the Rivermead Post Concussion Symptoms Questionnaire (RPQ), a 16-item self-report scale that assesses postconcussion symptom severity over the past 7 days relative to preinjury; (2) the Posttraumatic Stress Disorder Checklist for the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (PCL-5), a 20-item test that measures the severity of posttraumatic stress disorder symptoms; (3) the Patient Health Questionnaire-9 (PHQ-9), a 9-item scale that measures depression based on symptom frequency over the past 2 weeks; and (4) the Brief Symptom Inventory-18 (BSI-18), an 18-item scale of psychological distress (split into Depression and Anxiety subscales). Results: A total of 2000 patients with mTBI (1331 men [67%; mean (SD) age, 41.0 (17.3) years; 1026 White (78%)] and 669 women [33%; mean (SD) age, 43.0 (18.5) years; 505 (76%) White]). After adjustment of multiple comparisons, significant TBI × sex interactions were observed for cognitive symptoms (B = 0.76; 5% false discovery rate-corrected P = .02) and somatic RPQ symptoms (B = 0.80; 5% false discovery rate-corrected P = .02), with worse symptoms in women with mTBI than men, but no sex difference in symptoms in control patients with orthopedic trauma. Within the female patients evaluated, there was a significant TBI × age interaction for somatic RPQ symptoms, which were worse in female patients with mTBI aged 35 to 49 years compared with those aged 17 to 34 years (B = 1.65; P = .02) or older than 50 years (B = 1.66; P = .02). Conclusions and Relevance: This study found that women were more vulnerable than men to persistent mTBI-related cognitive and somatic symptoms, whereas no sex difference in symptom burden was seen after orthopedic injury. Postconcussion symptoms were also worse in women aged 35 to 49 years than in younger and older women, but further investigation is needed to corroborate these findings and to identify the mechanisms involved. Results suggest that individualized clinical management of mTBI should consider sex and age, as some women are especially predisposed to chronic postconcussion symptoms even 12 months after injury.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/etiologia , Síndrome Pós-Concussão/etiologia , Índice de Gravidade de Doença , Adulto , Idoso , Concussão Encefálica/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/psicologia , Disfunção Cognitiva/psicologia , Feminino , Escala de Coma de Glasgow , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome Pós-Concussão/psicologia , Estudos Prospectivos , Medição de Risco , Distribuição por Sexo
13.
JAMA Netw Open ; 4(3): e213467, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33783518

RESUMO

Importance: Heterogeneity across patients with traumatic brain injury (TBI) presents challenges for clinical care and intervention design. Identifying distinct clinical phenotypes of TBI soon after injury may inform patient selection for precision medicine clinical trials. Objective: To investigate whether distinct neurobehavioral phenotypes can be identified 2 weeks after TBI and to characterize the degree to which early neurobehavioral phenotypes are associated with 6-month outcomes. Design, Setting, and Participants: This prospective cohort study included patients presenting to 18 US level 1 trauma centers within 24 hours of TBI from 2014 to 2019 as part of the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study. Data were analyzed from January 28, 2020, to January 11, 2021. Exposures: TBI. Main Outcomes and Measures: Latent profiles (LPs) were derived from common dimensions of neurobehavioral functioning at 2 weeks after injury, assessed through National Institutes of Health TBI Common Data Elements (ie, Brief Symptom Inventory-18, Patient Health Questionnaire-9 Depression checklist, Posttraumatic Stress Disorder Checklist for DSM-5, PROMIS Pain Intensity scale, Insomnia Severity Index, Rey Auditory Verbal Learning Test, Wechsler Adult Intelligence Scale-Fourth Edition Coding and Symbol Search subtests, Trail Making Test, and NIH Toolbox Cognitive Battery Pattern Comparison Processing Speed, Dimensional Change Card Sort, Flanker Inhibitory Control and Attention, and Picture Sequence Memory subtests). Six-month outcomes were the Satisfaction With Life Scale (SWLS), Quality of Life after Brain Injury-Overall Scale (QOLIBRI-OS), Glasgow Outcome Scale-Extended (GOSE), and Rivermead Post-Concussion Symptoms Questionnaire (RPQ). Results: Among 1757 patients with TBI included, 1184 (67.4%) were men, and the mean (SD) age was 39.9 (17.0) years. LP analysis revealed 4 distinct neurobehavioral phenotypes at 2 weeks after injury: emotionally resilient (419 individuals [23.8%]), cognitively impaired (368 individuals [20.9%]), cognitively resilient (620 individuals [35.3%]), and neuropsychiatrically distressed (with cognitive weaknesses; 350 individuals [19.9%]). Adding LP group to models including demographic characteristics, medical history, Glasgow Coma Scale score, and other injury characteristics was associated with significantly improved estimation of association with 6-month outcome (GOSE R2 increase = 0.09-0.19; SWLS R2 increase = 0.12-0.22; QOLIBRI-OS R2 increase = 0.14-0.32; RPQ R2 = 0.13-0.34). Conclusions and Relevance: In this cohort study of patients with TBI presenting to US level-1 trauma centers, qualitatively distinct profiles of symptoms and cognitive functioning were identified at 2 weeks after TBI. These distinct phenotypes may help optimize clinical decision-making regarding prognosis, as well as selection and stratification for randomized clinical trials.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico , Cognição/fisiologia , Qualidade de Vida , Adulto , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/psicologia , Feminino , Seguimentos , Escala de Coma de Glasgow , Humanos , Masculino , Estudos Prospectivos , Fatores de Tempo
14.
Neurobiol Dis ; 154: 105334, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753291

RESUMO

The pathophysiology of extensive cortical tissue destruction observed in hemispheric hypodensity, a severe type of brain injury observed in young children, is unknown. Here, we utilize our unique, large animal model of hemispheric hypodensity with multifactorial injuries and insults to understand the pathophysiology of this severe type of traumatic brain injury, testing the effect of different stages of development. Piglets developmentally similar to human infants (1 week old, "infants") and toddlers (1 month old, "toddlers") underwent injuries and insults scaled to brain volume: cortical impact, creation of mass effect, placement of a subdural hematoma, seizure induction, apnea, and hypoventilation or a sham injury while anesthetized with a seizure-permissive regimen. Piglets receiving model injuries required overnight intensive care. Hemispheres were evaluated for damage via histopathology. The pattern of damage was related to seizure duration and hemorrhage pattern in "toddlers" resulting in a unilateral hemispheric pattern of damage ipsilateral to the injuries with sparing of the deep brain regions and the contralateral hemisphere. While "infants" had the equivalent duration of seizures as "toddlers", damage was less than "toddlers", not correlated to seizure duration, and was bilateral and patchy as is often observed in human infants. Subdural hemorrhagewas associate with adjacent focal subarachnoid hemorrhage. The percentage of the hemisphere covered with subarachnoid hemorrhage was positively correlated with damage in both developmental stages. In "infants", hemorrhage over the cortex was associated with damage to the cortex with sparing of the deep gray matter regions; without hemorrhage, damage was directed to the hippocampus and the cortex was spared. "Infants" had lower neurologic scores than "toddlers". This multifactorial model of severe brain injury caused unilateral, wide-spread destruction of the cortex in piglets developmentally similar to toddlers where both seizure duration and hemorrhage covering the brain were positively correlated to tissue destruction. Inherent developmental differences may affect how the brain responds to seizure, and thus, affects the extent and pattern of damage. Study into specifically how the "infant" brain is resistant to the effects of seizure is currently underway and may identify potential therapeutic targets that may reduce evolution of tissue damage after severe traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Encéfalo/patologia , Hemorragia Cerebral/patologia , Convulsões/patologia , Índice de Gravidade de Doença , Fatores Etários , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/induzido quimicamente , Lesões Encefálicas Traumáticas/metabolismo , Hemorragia Cerebral/induzido quimicamente , Hemorragia Cerebral/metabolismo , Ácido Caínico/toxicidade , Masculino , Convulsões/induzido quimicamente , Convulsões/metabolismo , Suínos , Fatores de Tempo
15.
J Neurosurg Pediatr ; 27(4): 469-474, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33578391

RESUMO

OBJECTIVE: The incidence of venous thromboembolism (VTE) in patients with traumatic brain injury (TBI) has increased significantly. The Eastern Association for the Surgery of Trauma recommends using low-molecular-weight heparin (LMWH) over unfractionated heparin (UH) in pediatric patients requiring VTE prophylaxis, although this strategy is unsupported by the literature. In this study, the authors compare the outcomes of pediatric TBI patients receiving LMWH versus UH. METHODS: The authors performed a 4-year (2014-2017) analysis of the pediatric American College of Surgeons Trauma Quality Improvement Program. All trauma patients (age ≤ 18 years) with TBI requiring thromboprophylaxis with UH or LMWH were potentially eligible for inclusion. Patients who had been transferred, had died in the emergency department, or had penetrating trauma were excluded. Patients were stratified into either the LMWH or the UH group on the basis of the prophylaxis they had received. Patients were matched on the basis of demographics, injury characteristics, vital signs, and transfusion requirements using propensity score matching (PSM). The study endpoints were VTE, death, and craniotomy after initiation of prophylaxis. Univariate analysis was performed after PSM to compare outcomes. RESULTS: A total of 2479 patients met the inclusion criteria (mean age 15.5 ± 3.7 years and 32.0% female), of which 1570 (63.3%) had received LMWH and 909 (36.7%) had received UH. Before PSM, patients receiving UH were younger, had a lower Glasgow Coma Scale score, and had a higher Injury Severity Score. Patients treated in pediatric hospitals were more likely to receive UH (12.9% vs 9.0%, p < 0.001) than patients treated in adult hospitals. Matched patients receiving UH had a higher incidence of VTE (5.1% vs 2.9%, p = 0.03). CONCLUSIONS: LMWH prophylaxis in pediatric TBI appears to be more effective than UH in preventing VTE. Large, multicenter prospective studies are warranted to confirm the superiority of LMWH over UH in pediatric patients with TBI. Moreover, outcomes of VTE prophylaxis in the very young remain understudied; therefore, dedicated studies to evaluate this population are needed.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Heparina de Baixo Peso Molecular/uso terapêutico , Heparina/uso terapêutico , Tromboembolia Venosa/prevenção & controle , Adolescente , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Estudos Retrospectivos , Resultado do Tratamento , Tromboembolia Venosa/etiologia
16.
Pediatr Neurosurg ; 56(1): 94-98, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33517340

RESUMO

INTRODUCTION: Pediatric gunshot wounds (GSWs) to the head are not well studied in the literature, especially in civilians. With a dearth of case-based and clinically relevant information, pediatric neurosurgeons may be challenged when considering the risks and benefits of removing retained bullet fragments in different intracranial locations. We explore the literature and highlight the key factors in the surgical decision-making case of a 16-year-old girl with GSW to the visual cortex. CASE REPORT: A 16-year-old girl was shot in the head in a parieto-occipital trajectory with the bullet crossing midline, lodging in the occipital lobe into the straight sinus. Her initial Glasgow Coma Scale was 7, and she was urgently stabilized with intracranial pressure monitoring and external ventricular drainage. She underwent craniectomy, debridement, and irrigation and then a reoperation for further debridement and culture 2 weeks later for persistent fevers; cultures remained negative. The retained bullet was not removed. At 18 months post-injury, she had normal speech and motor function, moderate memory dysfunction, and 3-quadrant field loss with retained macular vision. DISCUSSION/CONCLUSION: Pediatric penetrating GSWs to the head may be challenging to manage since literature is sparse. In this case, the primary focus of management was to maintain normal intracranial pressure, reduce risk of infection, and preserve potentially viable visual cortex. In the civilian context of available antibiotics and serial imaging, it may be possible to manage retained bullets conservatively without delayed complications.


Assuntos
Córtex Visual , Ferimentos por Arma de Fogo , Ferimentos Penetrantes , Adolescente , Criança , Craniotomia , Feminino , Escala de Coma de Glasgow , Humanos , Ferimentos por Arma de Fogo/diagnóstico por imagem , Ferimentos por Arma de Fogo/cirurgia
18.
Ann Surg Open ; 2(3): e093, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37635820
19.
Phys Occup Ther Pediatr ; 41(1): 56-73, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32396483

RESUMO

AIMS: Traumatic brain injury (TBI) can impair physical function in children. The NIH Toolbox Motor Battery (NIHTB-M) was designed to be a brief assessment of physical function, but no studies have examined its use in children with TBI. This study aims to describe the feasibility of using the NIHTB-M to assess children with TBI. METHODS: The NIHTB-M was administered to children with TBI 2 weeks (n = 22) and/or 6 months (n = 23) following injury. This descriptive study summarizes participant performance, administration challenges, and the association between NIHTB-M scores, participant characteristics, and subjective report of physical function. RESULTS: Of the NIHTB-M domains, deficits in endurance and balance were most prevalent. Children aged 5 to 16 years could complete the assessment per administration guidelines, except for a few cases (n = 3) where orthopedic injuries limited participation. Younger children (aged 3 to 4) had difficulty following the NIHTB-M directions. Technological issues impacted balance assessment in several cases (n = 6). CONCLUSION: The NIHTB-M is brief to administer, generally well tolerated by school-aged children and, despite occasional technological challenges, is a feasible performance-based battery for assessment of children with TBI for clinical and research purposes. Additional investigation of psychometric properties and ceiling and floor effects is needed.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Locomoção/fisiologia , Testes Neuropsicológicos/normas , Resistência Física/fisiologia , Equilíbrio Postural/fisiologia , Adolescente , Criança , Estudos de Viabilidade , Feminino , Humanos , Masculino
20.
Cureus ; 12(5): e8011, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32411564

RESUMO

Pediatric traumatic brain injury (TBI) is a major cause of concern worldwide. Non-accidental traumatic (NAT) brain injury is common in infants. Since infants may present with varied presentations post-NAT, a healthy suspicion is required for effective diagnosis. Infants with NAT and, rarely, accidental subdural hemorrhage may exhibit a clinicoradiologically dissociative presentation, with their behavior appearing to reflect better function than what becomes apparent with maturation. Injury to the developing brain can result in extensive damage consistent with the "big black brain" phenomenon, which predicts poor prognosis. Sequential magnetic resonance imaging (MRI) is important to understand insults to the developing brain for follow-up and prognostication. Pediatric traumatic brain injury (TBI) is a major cause of concern worldwide. NAT brain injury is common in infants, who may present with varied presentations post-NAT, hence, a healthy suspicion is required for effective diagnosis. Infants with NAT and, rarely, an accidental subdural hemorrhage may exhibit a clinicoradiologically dissociative presentation with their behavior appearing to reflect better function than what becomes apparent with maturation. Injury to the developing brain can result in extensive damage consistent with the "big black brain" phenomenon, which predicts poor prognosis. Sequential MRI is important to understand insults to the developing brain for follow-up and prognostication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...