Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 17845, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552389

RESUMO

Structural properties of cohesive powders are dominated by their microstructural composition. Powders with a fractal microstructure show particularly interesting properties during compaction where a microstructural transition and a fractal breakdown happen before compaction and force transport. The study of this phenomenon has been challenging due to its long-range effect and the subsequent necessity to characterize these microstructural changes on a macroscopic scale. For the detailed investigation of the complex nature of powder compaction for various densification states along with the heterogeneous breakdown of the fractal microstructure we applied neutron dark-field imaging in combination with a variety of supporting techniques with various spatial resolutions, field-of-views and information depths. We used scanning electron microscopy to image the surface microstructure in a small field-of-view and X-ray tomography to image density variations in 3D with lower spatial resolution. Non-local spin-echo small-angle neutron scattering results are used to evaluate fitting models later used as input parameters for the neutron dark-field imaging data analysis. Finally, neutron dark-field imaging results in combination with supporting measurements using scanning electron microscopy, X-ray tomography and spin-echo small angle scattering allowed us to comprehensively study the heterogeneous transition from a fractal to a homogeneous microstructure of a cohesive powder in a quantitative manner.

2.
Phys Rev E ; 96(1-1): 012411, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29347273

RESUMO

Small-angle neutron scattering (SANS) on nuclei of chicken erythrocytes demonstrates the cubic dependence of the scattering intensity Q^{-3} in the range of momentum transfer Q∈10^{-3}-10^{-2}nm^{-1}. Independent spin-echo SANS measurements give the spin-echo function, which is well described by the exponential law in a range of sizes (3×10^{2})-(3×10^{4}) nm. Both experimental dependences reflect the nature of the structural organization of chromatin in the nucleus of a living cell, which corresponds to the correlation function γ(r)=ln(ξ/r) for r<ξ, where ξ=(3.69±0.07)×10^{3} nm, the size of the nucleus. It has the specific scaling property of the logarithmic fractal γ(r/a)=γ(r)+ln(a), i.e., the scaling down by a gives an additive constant to the correlation function, which distinguishes it from the mass fractal, which is characterized by multiplicative constant.


Assuntos
Núcleo Celular/química , Cromatina/química , Eritrócitos/química , Modelos Biológicos , Animais , Núcleo Celular/metabolismo , Galinhas , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Eritrócitos/metabolismo , Fractais , Modelos Moleculares , Difração de Nêutrons , Conformação de Ácido Nucleico , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...