Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2555-2565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32149651

RESUMO

Breast cancer is the most common invasive cancer with the highest cancer occurrence in females. Handheld ultrasound is one of the most efficient ways to identify and diagnose the breast cancer. The area and the shape information of a lesion is very helpful for clinicians to make diagnostic decisions. In this study we propose a new deep-learning scheme, semi-pixel-wise cycle generative adversarial net (SPCGAN) for segmenting the lesion in 2D ultrasound. The method takes the advantage of a fully convolutional neural network (FCN) and a generative adversarial net to segment a lesion by using prior knowledge. We compared the proposed method to a fully connected neural network and the level set segmentation method on a test dataset consisting of 32 malignant lesions and 109 benign lesions. Our proposed method achieved a Dice similarity coefficient (DSC) of 0.92 while FCN and the level set achieved 0.90 and 0.79 respectively. Particularly, for malignant lesions, our method increases the DSC (0.90) of the fully connected neural network to 0.93 significantly (p 0.001). The results show that our SPCGAN can obtain robust segmentation results. The framework of SPCGAN is particularly effective when sufficient training samples are not available compared to FCN. Our proposed method may be used to relieve the radiologists' burden for annotation.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Ultrassonografia Mamária/métodos , Algoritmos , Mama/diagnóstico por imagem , Feminino , Humanos
2.
Med Image Anal ; 68: 101849, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33197715

RESUMO

Rotation-invariance is a desired property of machine-learning models for medical image analysis and in particular for computational pathology applications. We propose a framework to encode the geometric structure of the special Euclidean motion group SE(2) in convolutional networks to yield translation and rotation equivariance via the introduction of SE(2)-group convolution layers. This structure enables models to learn feature representations with a discretized orientation dimension that guarantees that their outputs are invariant under a discrete set of rotations. Conventional approaches for rotation invariance rely mostly on data augmentation, but this does not guarantee the robustness of the output when the input is rotated. At that, trained conventional CNNs may require test-time rotation augmentation to reach their full capability. This study is focused on histopathology image analysis applications for which it is desirable that the arbitrary global orientation information of the imaged tissues is not captured by the machine learning models. The proposed framework is evaluated on three different histopathology image analysis tasks (mitosis detection, nuclei segmentation and tumor detection). We present a comparative analysis for each problem and show that consistent increase of performances can be achieved when using the proposed framework.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Aprendizado de Máquina
3.
Entropy (Basel) ; 21(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33266754

RESUMO

Fokker-Planck PDEs (including diffusions) for stable Lévy processes (including Wiener processes) on the joint space of positions and orientations play a major role in mechanics, robotics, image analysis, directional statistics and probability theory. Exact analytic designs and solutions are known in the 2D case, where they have been obtained using Fourier transform on S E ( 2 ) . Here, we extend these approaches to 3D using Fourier transform on the Lie group S E ( 3 ) of rigid body motions. More precisely, we define the homogeneous space of 3D positions and orientations R 3 ⋊ S 2 : = S E ( 3 ) / ( { 0 } × S O ( 2 ) ) as the quotient in S E ( 3 ) . In our construction, two group elements are equivalent if they are equal up to a rotation around the reference axis. On this quotient, we design a specific Fourier transform. We apply this Fourier transform to derive new exact solutions to Fokker-Planck PDEs of α -stable Lévy processes on R 3 ⋊ S 2 . This reduces classical analysis computations and provides an explicit algebraic spectral decomposition of the solutions. We compare the exact probability kernel for α = 1 (the diffusion kernel) to the kernel for α = 1 2 (the Poisson kernel). We set up stochastic differential equations (SDEs) for the Lévy processes on the quotient and derive corresponding Monte-Carlo methods. We verified that the exact probability kernels arise as the limit of the Monte-Carlo approximations.

4.
IEEE Trans Pattern Anal Mach Intell ; 40(2): 452-466, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252390

RESUMO

We propose a template matching method for the detection of 2D image objects that are characterized by orientation patterns. Our method is based on data representations via orientation scores, which are functions on the space of positions and orientations, and which are obtained via a wavelet-type transform. This new representation allows us to detect orientation patterns in an intuitive and direct way, namely via cross-correlations. Additionally, we propose a generalized linear regression framework for the construction of suitable templates using smoothing splines. Here, it is important to recognize a curved geometry on the position-orientation domain, which we identify with the Lie group SE(2): the roto-translation group. Templates are then optimized in a B-spline basis, and smoothness is defined with respect to the curved geometry. We achieve state-of-the-art results on three different applications: detection of the optic nerve head in the retina (99.83 percent success rate on 1,737 images), of the fovea in the retina (99.32 percent success rate on 1,616 images), and of the pupil in regular camera images (95.86 percent on 1,521 images). The high performance is due to inclusion of both intensity and orientation features with effective geometric priors in the template matching. Moreover, our method is fast due to a cross-correlation based matching approach.

5.
J Neurosci Methods ; 288: 34-44, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28648721

RESUMO

BACKGROUND: An accurate delineation of the optic radiation (OR) using diffusion MR tractography may reduce the risk of a visual field deficit after temporal lobe resection. However, tractography is prone to generate spurious streamlines, which deviate strongly from neighboring streamlines and hinder a reliable distance measurement between the temporal pole and the Meyer's loop (ML-TP distance). NEW METHOD: Stability metrics are introduced for the automated removal of spurious streamlines near the Meyer's loop. Firstly, fiber-to-bundle coherence (FBC) measures can identify spurious streamlines by estimating their alignment with the surrounding streamline bundle. Secondly, robust threshold selection removes spurious streamlines while preventing an underestimation of the extent of the Meyer's loop. Standardized parameter selection is realized through test-retest evaluation of the variability in ML-TP distance. RESULTS: The variability in ML-TP distance after parameter selection was below 2mm for each of the healthy volunteers studied (N=8). The importance of the stability metrics is illustrated for epilepsy surgery candidates (N=3) for whom the damage to the Meyer's loop was evaluated by comparing the pre- and post-operative OR reconstruction. The difference between predicted and observed damage is in the order of a few millimeters, which is the error in measured ML-TP distance. COMPARISON WITH EXISTING METHOD(S): The stability metrics are a novel method for the robust estimate of the ML-TP distance. CONCLUSIONS: The stability metrics are a promising tool for clinical trial studies, in which the damage to the OR can be related to the visual field deficit that may occur after epilepsy surgery.


Assuntos
Mapeamento Encefálico , Processamento de Imagem Assistida por Computador , Transtornos da Percepção/etiologia , Complicações Pós-Operatórias/patologia , Campos Visuais/fisiologia , Vias Visuais/fisiologia , Adulto , Imagem de Difusão por Ressonância Magnética , Epilepsia do Lobo Temporal/cirurgia , Voluntários Saudáveis , Humanos , Masculino , Fibras Nervosas/patologia , Vias Visuais/diagnóstico por imagem , Adulto Jovem
6.
Biol Cybern ; 111(3-4): 237-247, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28488018

RESUMO

Natural images contain often curvilinear structures, which might be disconnected, or partly occluded. Recovering the missing connection of disconnected structures is an open issue and needs appropriate geometric reasoning. We propose to find line co-occurrence statistics from the centerlines of blood vessels in retinal images and show its remarkable similarity to a well-known probabilistic model for the connectivity pattern in the primary visual cortex. Furthermore, the probabilistic model is trained from the data via statistics and used for automated grouping of interrupted vessels in a spectral clustering based approach. Several challenging image patches are investigated around junction points, where successful results indicate the perfect match of the trained model to the profiles of blood vessels in retinal images. Also, comparisons among several statistical models obtained from different datasets reveal their high similarity, i.e., they are independent of the dataset. On top of that the best approximation of the statistical model with the symmetrized extension of the probabilistic model on the projective line bundle is found with a least square error smaller than [Formula: see text]. Apparently, the direction process on the projective line bundle is a good continuation model for vessels in retinal images.


Assuntos
Modelos Estatísticos , Retina , Vasos Retinianos , Retina/anatomia & histologia , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia
7.
IEEE Trans Med Imaging ; 35(12): 2631-2644, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27514039

RESUMO

This paper presents a robust and fully automatic filter-based approach for retinal vessel segmentation. We propose new filters based on 3D rotating frames in so-called orientation scores, which are functions on the Lie-group domain of positions and orientations [Formula: see text]. By means of a wavelet-type transform, a 2D image is lifted to a 3D orientation score, where elongated structures are disentangled into their corresponding orientation planes. In the lifted domain [Formula: see text], vessels are enhanced by means of multi-scale second-order Gaussian derivatives perpendicular to the line structures. More precisely, we use a left-invariant rotating derivative (LID) frame, and a locally adaptive derivative (LAD) frame. The LAD is adaptive to the local line structures and is found by eigensystem analysis of the left-invariant Hessian matrix (computed with the LID). After multi-scale filtering via the LID or LAD in the orientation score domain, the results are projected back to the 2D image plane giving us the enhanced vessels. Then a binary segmentation is obtained through thresholding. The proposed methods are validated on six retinal image datasets with different image types, on which competitive segmentation performances are achieved. In particular, the proposed algorithm of applying the LAD filter on orientation scores (LAD-OS) outperforms most of the state-of-the-art methods. The LAD-OS is capable of dealing with typically difficult cases like crossings, central arterial reflex, closely parallel and tiny vessels. The high computational speed of the proposed methods allows processing of large datasets in a screening setting.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Oftalmoscopia/métodos , Vasos Retinianos/diagnóstico por imagem , Análise de Ondaletas , Bases de Dados Factuais , Humanos
8.
Med Image Comput Comput Assist Interv ; 17(Pt 2): 603-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25485429

RESUMO

The multi-scale Frangi vesselness filter is an established tool in (retinal) vascular imaging. However, it cannot properly cope with crossings or bifurcations since it only looks for elongated structures. Therefore, we disentangle crossings/bifurcations via (multiple scale) invertible orientation scores and apply vesselness filters in this domain. This new method via scale-orientation scores performs considerably better at enhancing vessels throughout crossings and bifurcations than the Frangi version. Both methods are evaluated on a public dataset. Performance is measured by comparing ground truth data to the segmentation results obtained by basic thresholding and morphological component analysis of the filtered images.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Vasos Retinianos/anatomia & histologia , Retinoscopia/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
PLoS One ; 9(7): e101524, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25077946

RESUMO

Diffusion MRI and tractography allow for investigation of the architectural configuration of white matter in vivo, offering new avenues for applications like presurgical planning. Despite the promising outlook, there are many pitfalls that complicate its use for (clinical) application. Amongst these are inaccuracies in the geometry of the diffusion profiles on which tractography is based, and poor alignment with neighboring profiles. Recently developed contextual processing techniques, including enhancement and well-posed geometric sharpening, have shown to result in sharper and better aligned diffusion profiles. However, the research that has been conducted up to now is mainly of theoretical nature, and so far these techniques have only been evaluated by visual inspection of the diffusion profiles. In this work, the method is evaluated in a clinically relevant application: the reconstruction of the optic radiation for epilepsy surgery. For this evaluation we have developed a framework in which we incorporate a novel scoring procedure for individual pathways. We demonstrate that, using enhancement and sharpening, the extraction of an anatomically plausible reconstruction of the optic radiation from a large amount of probabilistic pathways is greatly improved in three healthy controls, where currently used methods fail to do so. Furthermore, challenging reconstructions of the optic radiation in three epilepsy surgery candidates with extensive brain lesions demonstrate that it is beneficial to integrate these methods in surgical planning.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Epilepsia/cirurgia , Epilepsia/patologia , Humanos , Modelos Teóricos
10.
Med Image Comput Comput Assist Interv ; 13(Pt 1): 175-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20879229

RESUMO

Dissimilarity measures for DTI clustering are abundant. However, for HARDI, the L2 norm has up to now been one of only few practically feasible measures. In this paper we propose a new measure, that not only compares the amplitude of diffusion profiles, but also rewards coincidence of the extrema. We tested this on phantom and real brain data. In both cases, our measure significantly outperformed the L2 norm.


Assuntos
Algoritmos , Encéfalo/citologia , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neurônios/citologia , Reconhecimento Automatizado de Padrão/métodos , Imagem de Difusão por Ressonância Magnética/instrumentação , Estudos de Viabilidade , Humanos , Aumento da Imagem/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...