Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118861, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651902

RESUMO

Disinfection and decontamination of water by application of oxidisers is an essential treatment step across numerous industrial sectors including potable supply and industry waste management, however, could be greatly enhanced if operated as advanced oxidation processes (AOPs). AOPs destroy contaminants including pathogens by uniquely harnessing radical chemistry. Despite AOPs offer great practical opportunities, no reviews to date have highlighted the critical AOP virtues that facilitate AOPs' scale up under growing industrial demand. Hence, this review analyses the critical AOP parameters such as oxidant conversion efficiency, batch mode vs continuous-flow systems, location of radical production, radical delivery by advanced micro-/mesoporous structures and AOP process costs to assist the translation of progressing developments of AOPs into their large-scale applications. Additionally, the state of the art is analysed for various AOP inducing radical/oxidiser measurement techniques and their half-lives with a view to identify radicals/oxidisers that are suitable for in-situ production. It is concluded that radicals with short half-lives such as hydroxyl (10-4 µsec) and sulfate (30-40 µsec) need to be produced in-situ via continuous-flow reactors for their effective transport and dosing. Meanwhile, radicals/oxidisers with longer half-lives such as ozone (7-10 min), hydrogen peroxide (stable for several hours), and hypochlorous acid (10 min -17 h) need to be applied through batch reactor systems due to their relatively longer stability during transportation and dosing. Complex and costly synthesis as well as cytotoxicity of many micro-/mesoporous structures limit their use in scaling up AOPs, particularly to immobilising and delivering the short-lived hydroxyl and sulfate radicals to their point of applications. Overall, radical delivery using safe and advanced biocompatible micro-/mesoporous structures, radical conversion efficiency using advanced reactor design and portability of AOPs are priority areas of development for scaling up to industry.


Assuntos
Desinfecção , Oxidantes , Oxirredução , Peróxido de Hidrogênio , Radical Hidroxila , Sulfatos
2.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205199

RESUMO

Lead detection for biological environments, aqueous resources, and medicinal compounds, rely mainly on either utilizing bulky lab equipment such as ICP-OES or ready-made sensors, which are based on colorimetry with some limitations including selectivity and low interference. Remote, rapid and efficient detection of heavy metals in aqueous solutions at ppm and sub-ppm levels have faced significant challenges that requires novel compounds with such ability. Here, a UiO-66(Zr) metal-organic framework (MOF) functionalized with SO3H group (SO3H-UiO-66(Zr)) is deposited on the end-face of an optical fiber to detect lead cations (Pb2+) in water at 25.2, 43.5 and 64.0 ppm levels. The SO3H-UiO-66(Zr) system provides a Fabry-Perot sensor by which the lead ions are detected rapidly (milliseconds) at 25.2 ppm aqueous solution reflecting in the wavelength shifts in interference spectrum. The proposed removal mechanism is based on the adsorption of [Pb(OH2)6]2+ in water on SO3H-UiO-66(Zr) due to a strong affinity between functionalized MOF and lead. This is the first work that advances a multi-purpose optical fiber-coated functional MOF as an on-site remote chemical sensor for rapid detection of lead cations at extremely low concentrations in an aqueous system.


Assuntos
Chumbo/isolamento & purificação , Metais Pesados/isolamento & purificação , Compostos Organometálicos/química , Ácidos Ftálicos/química , Poluentes Químicos da Água/isolamento & purificação , Humanos , Chumbo/química , Estruturas Metalorgânicas/química , Metais Pesados/química , Fibras Ópticas , Água/química , Poluentes Químicos da Água/química , Zircônio/química
3.
Environ Sci Technol ; 54(12): 7715-7724, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32401501

RESUMO

Rational design of a high-performance defect-free polyamide (PA) layer on a robust ceramic substrate is challenging for forward osmosis (FO) water treatment applications. In this study, we first demonstrated a robust ceramic-based thin-film composite (TFC) FO membrane by engineering a novel nanocomposite interlayer of titanium dioxide and carbon nanotube (TiO2/CNT). The structural morphologies and properties were systematically characterized for different substrates (without interlayer, with TiO2 interlayer, or with TiO2/CNT interlayer) and the corresponding ceramic-based TFC-FO membranes. Introduction of low roughness nanocomposite interlayers with decreased pore size created an interface with improved surface characteristics, favoring the formation of a defect-free nanovoid-containing PA layer with high cross-linking degree. The resulting ceramic-based FO membrane had a water permeability of approximately 2 L/(m2 h bar) and a NaCl rejection of 98%, showing simultaneous enhancements in both compared to the control membrane without an interlayer. Mechanism analysis indicates that such a special nanocomposite interlayer not only provided more active sites for the formation of a thinner defect-free nanovoid-containing PA layer without penetration into substrate but also acted as a highly porous three-dimensional network structure for rapid water transport. This work provides a novel protocol for rational design and fabrication of a high-performance multilayered inorganic FO membrane as well as extended applications in water treatment with enhanced performance.


Assuntos
Nanocompostos , Purificação da Água , Cerâmica , Membranas Artificiais , Osmose
4.
J Environ Manage ; 253: 109655, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654925

RESUMO

The beneficial effect of combining ozone with ceramic membrane filtration (CMF) to enhance membrane flux performances during water treatment (e.g., wastewater and drinking water) could be related to the formation of hydroxyl (HO) radicals from the interaction of ozone with ceramic membrane. To explore this effect, para-chlorobenzoic acid was used to probe HO radical activity during a combined ozone/CMF process using a 0.1 µm pore size membrane supplied by Metawater, Japan. Tests were then extended to explore the impact on bromate formation downstream CMF, a well-known undesirable by-product from ozone use in water treatment. Ozone reduction by the membrane and its module appeared to be more associated with physical degassing, but a noticeable formation of HO radicals was observed during the interaction of ozone with the ceramic membrane. CMF treatment of ozonated potable water containing bromide showed a reduced bromate formation of 50% when the water was recirculated to the filtration module containing the ceramic membrane, compared to the experiment performed with an empty module. Single pass experiments showed bromate mitigation of around 10%. The mitigation of bromate formation was attributed to reduced overall ozone exposure by deagassing effect, but also potentially from suppression of the oxidation of Br- and HOBr/BrO- to BrO3- due to the catalytic degradation of ozone via a HO radical pathway.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Bromatos , Cerâmica , Radical Hidroxila , Japão
5.
Sci Rep ; 9(1): 8320, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171803

RESUMO

The burgeoning organic waste and continuously increasing energy demands have resulted in significant environmental pollution concerns. To address this issue, the potential of different bacteria to produce biogas/biohydrogen from organic waste can be utilized as a source of renewable energy, however these pathogenic bacteria are not safe to use without strict contact isolation. In this study the role of safe food grade lactic acid bacteria (Lactobacillus spp.) was investigated for production of biogas from cheese waste with starting hexose concentration 32 g/L. The bacterium Lactobacillus acidophilus was identified as one of the major biogas producers at optimum pH of 6.5. Further the optimum inoculum conditions were found to be 12.5% at inoculum age of 18 h. During the investigation the maximum biogas production was observed to be 1665 mL after 72 hours of incubation at pH 6.5. The biogas production was accompanied with production of other valuable metabolites in the form of organic acids including pyruvate, propionate, acetate, lactate, formate and butyrate. Thus this research is paving way for nonpathogenic production of biohydrogen from food waste.


Assuntos
Biocombustíveis , Queijo , Hidrogênio/química , Lactobacillus acidophilus/metabolismo , Soro do Leite/química , Reatores Biológicos , Butiratos/química , Escherichia coli , Fermentação , Microbiologia de Alimentos , Tecnologia de Alimentos/métodos , Formiatos/química , Hexoses/química , Concentração de Íons de Hidrogênio , Ácido Láctico/química , Lacticaseibacillus casei , Lacticaseibacillus paracasei , Lactococcus lactis , Lipídeos , Propionatos/química , Ácido Pirúvico/química
6.
Water Res ; 158: 182-192, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31035195

RESUMO

Desalination and water reuse are important means to resolve local water scarcity and security issues worldwide where membrane distillation (MD) may be part of a solution. Natural organic matter and in particular, humic acids (HA), are widely present in water supplies to be treated but exhibit little understood behavior to diffuse through MD membranes into permeate. In this work, air gap (AGMD) and water gap (WGMD) were utilized to study HA behavior in MD using seawater and synthetic water over a range of typical MD temperatures, flow rates and membrane types. HA diffusion was first shown with seawater feed then on synthetic solutions at all process conditions. While electrical conductivity rejection was always above than 99%, HA rejection showed values of 33% and 90% for AGMD and 68% and 93% for WGMD with seawater and synthetic water, respectively. Analytical techniques were used to perform a preliminary organic matter characterization in permeate, obtaining clear differences between the feed and permeate HA property. Compared to hydrophobic membranes, uniquely oleophobic membranes inhibit HA diffusion suggesting hydrophobic surface diffusion of HA through the membrane. HA flux as well as potential undesirable effects of the organic matter in permeate should be considered for MD applications.


Assuntos
Destilação , Purificação da Água , Substâncias Húmicas , Membranas Artificiais , Água
7.
Membranes (Basel) ; 8(4)2018 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513814

RESUMO

Adopting an effective strategy to control fouling is a necessary requirement for all membrane processes used in the water/wastewater treatment industry to operate sustainably. The use of ultraviolet (UV) activated photocatalysis has been shown to be effective in mitigating ceramic membrane fouling by natural organic matter. The widely used configuration in which light is directed through the polluted water to the membrane's active layer suffers from inefficiencies brought about by light absorption by the pollutants and light shielding by the cake layer. To address these limitations, directing light through the substrate, instead of through polluted water, was studied. A UV conducting membrane was prepared by dip coating TiO2 onto a sintered glass substrate. The substrate could successfully conduct UV from a lamp source, unlike a typical alumina substrate. The prepared membrane was applied in the filtration of a humic acid solution as a model compound to study natural organic matter membrane fouling. Directing UV through the substrate showed only a 1 percentage point decline in the effectiveness of the cleaning method over two cleaning events from 72% to 71%, while directing UV over the photocatalytic layer had a 9 percentage point decline from 84% to 75%. Adapting the UV-through-substrate configuration could be more useful in maintaining membrane functionality during humic acid filtration than the current method being used.

8.
Membranes (Basel) ; 8(3)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235868

RESUMO

Controlling surface⁻protein interaction during wastewater treatment is the key motivation for developing functionally modified membranes. A new biocatalytic thermo-responsive poly vinylidene fluoride (PVDF)/nylon-6,6/poly(N-isopropylacrylamide)(PNIPAAm) ultrafiltration membrane was fabricated to achieve dual functionality of protein-digestion and thermo-responsive self-cleaning. The PVDF/nylon-6,6/PNIPAAm composite membranes were constructed by integrating a hydrophobic PVDF cast layer and hydrophilic nylon-6,6/PNIPAAm nanofiber layer on to which trypsin was covalently immobilized. The enzyme immobilization density on the membrane surface decreased with increasing PNIPAAm concentration, due to the decreased number of amine functional sites. An ultrafiltration study was performed using the synthetic model solution containing BSA/NaCl/CaCl2, where the PNIPAAm containing biocatalytic membranes demonstrated a combined effect of enzymatic and thermo-switchable self-cleaning. The membrane without PNIPAAm revealed superior fouling resistance and self-cleaning with an RPD of 22%, compared to membranes with 2 and 4 wt % PNIPAAm with 26% and 33% RPD, respectively, after an intermediate temperature cleaning at 50 °C, indicating that higher enzyme density offers more efficient self-cleaning than the combined effect of enzyme and PNIPAAm at low concentration. The conformational volume phase transition of PNIPAAm did not affect the stability of immobilized trypsin on membrane surfaces. Such novel surface engineering design offer a promising route to mitigate surface⁻protein contamination in wastewater applications.

9.
Membranes (Basel) ; 8(3)2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231584

RESUMO

Porous metal membranes have recently received increasing attention, and significant progress has been made in their preparation and characterisation. This progress has stimulated research in their applications in a number of key industries including wastewater treatment, dairy processing, wineries, and biofuel purification. This review examines recent significant progress in porous metal membranes including novel fabrication concepts and applications that have been reported in open literature or obtained in our laboratories. The advantages and disadvantages of the different membrane fabrication methods were presented in light of improving the properties of current membrane materials for targeted applications. Sintering of particles is one of the main approaches that has been used for the fabrication of commercial porous metal membranes, and it has great advantages for the fabrication of hollow fibre metal membranes. However, sintering processes usually result in large pores (e.g., >1 µm). So far, porous metal membranes have been mainly used for the filtration of liquids to remove the solid particles. For porous metal membranes to be more widely used across a number of separation applications, particularly for water applications, further work needs to focus on the development of smaller pore (e.g., sub-micron) metal membranes and the significant reduction of capital and maintenance costs.

10.
Food Technol Biotechnol ; 56(2): 218-227, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30228796

RESUMO

Membrane technology has been successfully applied for the purification of bromelain, a protease enzyme from pineapple. However, the current system operates less optimally in terms of flux and separation primarily due to properties of the feed, such as viscosity. Hence, in this study, enzymatic pretreatment and diafiltration operation were employed in a two-stage ultrafiltration (UF) system to enhance the performance of the purification and concentration process of bromelain enzyme from an extract of pineapple crude waste mixture (CWM). Pretreatment of the CWM extract using either pectinase or cellulase, or the combination of both, was applied and compared regarding the apparent viscosity reduction. Diafiltration step was introduced in UF stage 2 and observations on the flux performance, enzyme recovery and enzyme purity were made. A 12% apparent viscosity reduction was achieved when the CWM extract was pretreated with pectinase which led to 37-38% improvement in the flux performance of both UF stages, as well as higher enzyme recovery in UF stage 1. The introduction of diafiltration mode in UF stage 2 managed to sustain high flux values while yielding 4.4-fold enzyme purity (higher than a 2.5-fold purity achieved in our previous work); however, high diluent consumption was needed. The outcomes of this study showed that the flux performance and bromelain separation can be enhanced by reducing the viscosity with the employment of enzymatic pretreatment and diafiltration operation. Thus, both techniques can be potentially applied in a large-scale membrane-based process for bromelain production.

11.
J Contam Hydrol ; 215: 73-85, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30037489

RESUMO

Due to the widespread application of persulphate (PS) for in-situ chemical oxidation (ISCO), the PS activating role of naturally occurring minerals, such as iron oxides, has been the subject of a number of studies. However, major discrepancies remain as to the effectiveness, mode, and factors that influence iron oxides activation of PS. In this study, an attempt has been made to bridge this important knowledge gaps by a systematic study of PS activation, measured by orange G degradation, using commercial and self-synthesised magnetite, maghemite, and haematite particles. The results showed that the activation of PS by iron oxides does not depend on mineralogy, surface area or concentration of surface OH groups, but on crystalline inhomogeneities or structural irregularities. Significant dissolution of iron oxides accompanied PS activation, in a mainly homogeneous process, requiring a low pH environment to be effective. The activation of PS by iron oxides at neutral pH was found to be no better than dissolved iron activation contrary to some earlier publications. The results also suggest that under alkaline conditions, PS alone was more effective in degrading orange G than with iron oxides or dissolved iron activation. Phosphate buffer significantly retarded orange G degradation by iron-activated or unactivated PS with negative implication for ISCO in non-acidic, buffering environments. The results of this study contribute to enhancing the fundamental understanding of ISCO processes.


Assuntos
Compostos Azo , Compostos Férricos , Óxido Ferroso-Férrico , Sulfatos , Concentração de Íons de Hidrogênio , Ferro/química , Minerais/química , Oxirredução , Sulfatos/química
12.
ACS Appl Mater Interfaces ; 10(32): 27477-27487, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30048587

RESUMO

A new biocatalytic nanofibrous composite ultrafiltration membrane was developed to reduce protein fouling interactions and self-clean the membrane surface. The dual-layer poly(vinylidenefluoride)/nylon-6,6/chitosan composite membrane contains a hydrophobic poly(vinylidenefluoride) cast support layer and a hydrophilic functional nylon-6,6/chitosan nanofibrous surface layer where enzymes were chemically attached. The intrinsic surface chemistry and high surface area of the nanofibers allowed optimal and stable immobilization of trypsin (TR) and α-chymotrypsin enzymes via direct covalent binding. The enzyme immobilization was confirmed by X-ray photoelectron spectroscopy and visualized by confocal microscopy analysis. The prepared biocatalytic composite membranes were nanoporous with superior permeability offering stable protein antiadhesion and self-cleaning properties owing to the repulsive mechanism and digestion of proteins into peptides and amino acids, which was quantified by the gel electrophoresis technique. The TR-immobilized composite membranes exhibited 2.7-fold higher permeance and lower surface protein contamination with 3-fold greater permeance recovery, when compared to the pristine membrane after two ultrafiltration cycles with the model feed solution containing bovine serum albumin/NaCl/CaCl2. The biocatalytic membranes retained about 50% of the enzyme activity after six reuse cycles but were regenerated to 100% activity after enzyme reloading, leading to a simple and cost-effective water remediation operation. Such surface- and pore-engineered membranes with self-cleaning properties offer a viable solution for severe surface protein contamination in food and water applications.


Assuntos
Biocatálise , Enzimas Imobilizadas , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Permeabilidade , Ultrafiltração
13.
Membranes (Basel) ; 8(2)2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29914072

RESUMO

Treating wastewater from textile plants using membrane distillation (MD) has great potential due to the high-salinity wastes and availability of waste heat. However, textile wastewaters also contain surfactants, which compromise the essential hydrophobic feature of the membrane, causing membrane wetting. To address this wetting issue, a custom-made membrane consisting of a hydrophilic layer coated on hydrophobic polytetrafluoroethylene (PTFE) was tested on textile wastewater in a pilot MD setup, and compared with a conventional hydrophobic PTFE membrane. The test was carried out with a feed temperature of 60 °C, and a permeate temperature of 45 °C. The overall salt rejection of both membranes was very high, at 99%. However, the hydrophobic membrane showed rising permeate electrical conductivity, which was attributed to wetting of the membrane. Meanwhile, the hydrophilic-coated membrane showed continually declining electrical conductivity demonstrating an intact membrane that resisted wetting from the surfactants. Despite this positive result, the coated membrane did not survive a simple sodium hydroxide clean, which would be typically applied to a membrane process. This brief study showed the viability of membrane distillation membranes on real textile wastewaters containing surfactants using hydrophilic-coated hydrophobic PTFE, but the cleaning process required for membranes needs optimization.

14.
Water Res ; 139: 329-352, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660622

RESUMO

Membrane distillation (MD) is a rapidly emerging water treatment technology; however, membrane pore wetting is a primary barrier to widespread industrial use of MD. The primary causes of membrane wetting are exceedance of liquid entry pressure and membrane fouling. Developments in membrane design and the use of pretreatment have provided significant advancement toward wetting prevention in membrane distillation, but further progress is needed. In this study, a broad review is carried out on wetting incidence in membrane distillation processes. Based on this perspective, the study describes the wetting mechanisms, wetting causes, and wetting detection methods, as well as hydrophobicity measurements of MD membranes. This review discusses current understanding and areas for future investigation on the influence of operating conditions, MD configuration, and membrane non-wettability characteristics on wetting phenomena. Additionally, the review highlights mathematical wetting models and several approaches to wetting control, such as membrane fabrication and modification, as well as techniques for membrane restoration in MD. The literature shows that inorganic scaling and organic fouling are the main causes of membrane wetting. The regeneration of wetting MD membranes is found to be challenging and the obtained results are usually not favorable. Several pretreatment processes are found to inhibit membrane wetting by removing the wetting agents from the feed solution. Various advanced membrane designs are considered to bring membrane surface non-wettability to the states of superhydrophobicity and superomniphobicity; however, these methods commonly demand complex fabrication processes or high-specialized equipment. Recharging air in the feed to maintain protective air layers on the membrane surface has proven to be very effective to prevent wetting, but such techniques are immature and in need of significant research on design, optimization, and pilot-scale studies.


Assuntos
Destilação/instrumentação , Membranas Artificiais , Purificação da Água/instrumentação , Destilação/métodos , Modelos Teóricos , Purificação da Água/métodos , Molhabilidade
15.
Environ Sci Pollut Res Int ; 25(6): 5191-5202, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28462432

RESUMO

The aim of the present work was to experimentally evaluate an alternative advanced wastewater treatment system, which combines the action of photocatalytic oxidation with ceramic membrane filtration. Experiments were carried out using laboratory scale TiO2/UV photocatalytic reactor and tubular ceramic microfiltration (CMF) system to treat the secondary effluent (SE). A 100-nm pore size CMF membrane was investigated in cross flow mode under constant transmembrane pressure of 20 kPa. The results show that specific flux decline of CMF membrane with and without TiO2/UV photocatalytic treatment was 30 and 50%, respectively, after 60 min of filtration. Data evaluation revealed that the adsorption of organic compounds onto the TiO2 particles was dependent on the pH of the suspension and was considerably higher at low pH. The liquid chromatography-organic carbon detector (LC-OCD) technique was used to characterise the dissolved organic matter (DOM) present in the SE and was monitored following photocatalysis and CMF. The results showed that there was no removal of biopolymers and slight removal of humics, building blocks and the other oxidation by-products after TiO2/UV photocatalytic treatment. This result suggested that the various ions present in the SE act as scavengers, which considerably decrease the efficiency of the photocatalytic oxidation reactions. On the other hand, the CMF was effective for removing 50% of biopolymers with no further removal of other organic components after photocatalytic treatment. Thus, the quantity of biopolymers in SE has an apparent correlation with the filterability of water samples in CMF.


Assuntos
Cerâmica/química , Filtração , Processos Fotoquímicos , Raios Ultravioleta , Purificação da Água/métodos , Adsorção , Biopolímeros/isolamento & purificação , Filtração/instrumentação , Membranas Artificiais , Oxirredução , Titânio/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/instrumentação
16.
Water Res ; 126: 308-318, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28965033

RESUMO

Ozone pre-treatment (ozonation, ozonisation) and biological activated carbon (BAC) filtration pre-treatment for the ceramic microfiltration (CMF) treatment of secondary effluent (SE) were studied. Ozone pre-treatment was found to result in higher overall removal of UV absorbance (UVA254) and colour, and higher permeability than BAC pre-treatment or the combined use of ozone and BAC (O3+BAC) pre-treatment. The overall removal of colour and UVA254 by ceramic filtration of the ozone pre-treated water was 97% and 63% respectively, compared to 86% and 48% respectively for BAC pre-treatment and 29% and 6% respectively for the untreated water. Ozone pre-treatment, however, was not effective in removal of dissolved organic carbon (DOC). The permeability of the ozone pre-treated water through the ceramic membrane was found to decrease to 50% of the original value after 200 min of operation, compared to approximately 10% of the original value for the BAC pre-treated, O3+BAC pre-treated water and the untreated water. The higher permeability of the ozone pre-treated water was attributed to the excellent removal of biopolymer particles (100%) and high removal of humic substances (84%). The inclusion of a BAC stage between ozone pre-treatment and ceramic filtration was detrimental. The O3+BAC+CMF process was found to yield higher biopolymer removal (96%), lower humic substance (HS) component removal (66%) and lower normalized permeability (0.1) after 200 min of operation than the O3+CMF process (86%, 84% and 0.5 respectively). This was tentatively attributed to the chemical oxidation effect of ozone on the BAC biofilm and adsorbed components, leading to the generation of foulants that are not generated in the O3+CMF process. This study demonstrated the potential of ozone pre-treatment for reducing organic fouling and thus improving flux for the CMF of SE compared to O3+BAC pre-treatment.


Assuntos
Carvão Vegetal , Filtração , Membranas Artificiais , Ozônio , Purificação da Água , Adsorção , Biopolímeros , Cerâmica , Substâncias Húmicas , Poluentes Químicos da Água
17.
Membranes (Basel) ; 7(4)2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28961203

RESUMO

Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD) may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE) membranes with a hydrophilic polyurethane surface layer (PU-PTFE) are used for the first time for direct contact MD (DCMD) on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF) was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5-6 L/m²/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

18.
Sci Rep ; 7(1): 4426, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667264

RESUMO

Thin-film composite poly(amide) (PA) membranes have greatly diversified water supplies and food products. However, users would benefit from a control of the electrostatic interactions between the liquid and the net surface charge interface in order to benefit wider application. The ionic selectivity of the 100 nm PA semi-permeable layer is significantly affected by the pH of the solution. In this work, for the first time, a convenient route is presented to configure the surface charge of PA membranes by gamma ray induced surface grafting. This rapid and up-scalable method offers a versatile route for surface grafting by adjusting the irradiation total dose and the monomer concentration. Specifically, thin coatings obtained at low irradiation doses between 1 and 10 kGy and at low monomer concentration of 1 v/v% in methanol/water (1:1) solutions, dramatically altered the net surface charge of the pristine membranes from -25 mV to +45 mV, whilst the isoelectric point of the materials shifted from pH 3 to pH 7. This modification resulted in an improved water flux by over 55%, from 45.9 to up 70 L.m-2.h-1, whilst NaCl rejection was found to drop by only 1% compared to pristine membranes.

19.
Ultrason Sonochem ; 39: 716-726, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28732998

RESUMO

Poly (vinylidene fluoride) (PVDF) is an important membrane forming material for water treatment. Earlier works have shown that major morphological changes can be achieved when PVDF is dissolved under different conditions with practical applications in membrane distillation and protein attachment. However, no previous report has discussed the effects of dissolution conditions on the performance of PVDF under ultrafiltration, which is one of the most important applications of the polymer. In this work, four different PVDF ultrafiltration membranes were produced from dopes dissolved either by stirring at 24°C, 90°C, 120°C or by sonication. It is shown that dope sonication results in membrane with enhanced thermal and mechanical stability, improved permeate flux during oil emulsion filtration and high flux recovery of ∼63% after cleaning. As a comparison, flux recovery of only ∼26% was obtained for the membrane produced from dope dissolved at 24°C. The outstanding performance of the dope-sonicated membrane was linked to its slightly lower porosity, narrow distribution of small pores and relatively smooth skin layer. Performance parameters for all membranes showed good correlation to porosity suggesting a tool for membrane design achievable by simple variation in the mode of polymer dissolution. The polymer dissolution effect was related to the degree of unfolding of the polymer molecular chains and their entanglements.

20.
ACS Appl Mater Interfaces ; 9(21): 18328-18337, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28485956

RESUMO

Janus nanofiber based composite ultrafiltration (UF) membranes were fabricated via a two-step method, i.e., consecutive electrospinning of hydrophilic nylon-6,6/chitosan nanofiber blend and conventional casting of hydrophobic poly(vinylidene difluoride) (PVDF) dope solution. The as-developed PVDF/nylon-6,6/chitosan membranes were investigated for its morphology using Scanning Electron Microscopy (SEM) by which 18 wt % PVDF was chosen as the optimum base polymer concentration due to optimal degree of integration of cast and nanofiber layers. This membrane was benchmarked against the pure PVDF and PVDF/nylon-6,6 membranes in terms of surface properties, permeability, and its ability to reverse protein fouling. The improved hydrophilicity of the PVDF/nylon-6,6/chitosan membrane was revealed from the 72% reduction in the initial water contact angle compared to the pure PVDF benchmark, due to the incorporation of intrinsic hydrophilic hydroxyl and amine functional groups on the membrane surface confirmed by FTIR. The integration of the nanofiber and cast layers has led to altered pore arrangements offering about 93% rejection of bovine serum albumin (BSA) proteins with a permeance of 393 L·m-2·h-1·bar-1 in cross-flow filtration experiments; while the PVDF benchmark only had a BSA rejection of 67% and a permeance of 288 L·m-2·h-1·bar-1. The PVDF/nylon-6,6/chitosan membrane exhibited high fouling propensity with 2.2 times higher reversible fouling and 78% decrease in the irreversible fouling compared to the PVDF benchmark after 4 h of filtration with BSA foulants.


Assuntos
Nanofibras , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Soroalbumina Bovina , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...