Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611503

RESUMO

To overcome the different challenges to food security caused by a growing population and climate change, soybean (Glycine max (L.) Merr.) breeders are creating novel cultivars that have the potential to improve productivity while maintaining environmental sustainability. Genomic selection (GS) is an advanced approach that may accelerate the rate of genetic gain in breeding using genome-wide molecular markers. The accuracy of genomic selection can be affected by trait architecture and heritability, marker density, linkage disequilibrium, statistical models, and training set. The selection of a minimal and optimal marker set with high prediction accuracy can lower genotyping costs, computational time, and multicollinearity. Selective phenotyping could reduce the number of genotypes tested in the field while preserving the genetic diversity of the initial population. This study aimed to evaluate different methods of selective genotyping and phenotyping on the accuracy of genomic prediction for soybean yield. The evaluation was performed on three populations: recombinant inbred lines, multifamily diverse lines, and germplasm collection. Strategies adopted for marker selection were as follows: SNP (single nucleotide polymorphism) pruning, estimation of marker effects, randomly selected markers, and genome-wide association study. Reduction of the number of genotypes was performed by selecting a core set from the initial population based on marker data, yet maintaining the original population's genetic diversity. Prediction ability using all markers and genotypes was different among examined populations. The subsets obtained by the model-based strategy can be considered the most suitable for marker selection for all populations. The selective phenotyping based on makers in all cases had higher values of prediction ability compared to minimal values of prediction ability of multiple cycles of random selection, with the highest values of prediction obtained using AN approach and 75% population size. The obtained results indicate that selective genotyping and phenotyping hold great potential and can be integrated as tools for improving or retaining selection accuracy by reducing genotyping or phenotyping costs for genomic selection.

2.
Front Plant Sci ; 9: 1286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233624

RESUMO

Soybean time of flowering and maturity are genetically controlled by E genes. Different allelic combinations of these genes determine soybean adaptation to a specific latitude. The paper describes the first attempt to assess adaptation of soybean genotypes developed and realized at Institute of Field and Vegetable Crops, Novi Sad, Serbia [Novi Sad (NS) varieties and breeding lines] based on E gene variation, as well as to comparatively assess E gene variation in North-American (NA), Chinese, and European genotypes, as most of the studies published so far deal with North-American and Chinese cultivars and breeding material. Allelic variation and distribution of the major maturity genes (E1, E2, E3, and E4) has been determined in 445 genotypes from soybean collections of NA ancestral lines, Chinese germplasm, and European varieties, as well as NS varieties and breeding lines. The study showed that allelic combinations of E1-E4 genes significantly determined the adaptation of varieties to different geographical regions, although they have different impacts on maturity. In general, each collection had one major E genotype haplogroup, comprising over 50% of the lines. The exceptions were European varieties that had two predominant haplogroups and NA ancestral lines distributed almost evenly among several haplogroups. As e1-as/e2/E3/E4 was the most common genotype in NS population, present in the best-performing genotypes in terms of yield, this specific allele combination was proposed as the optimal combination for the environments of Central-Eastern Europe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...