Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 197: 110374, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851301

RESUMO

This review provides a concise historical summary of contributions from a selected group of pioneering women in radiation science born before the world war II - from the discovery of radioactivity through various scientific developments and breakthroughs. Starting from the renowned scientific contributions of Marie Sklodowska-Curie, we describe the work of numerous women pioneers whose discoveries propelled the field of radiation research. We also discuss the social and academic context in which this work emerged, highlighting their professional determination and excellence. While the scientific contributions of these women are invaluable for science in general, the importance of recognizing their work as an opportunity for developing role models for subsequent generations of women researchers is emphasized.


Assuntos
Pesquisadores , Feminino , Humanos , História do Século XIX , História do Século XX , Pesquisadores/história
2.
Med Phys ; 51(7): 5045-5058, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38507254

RESUMO

BACKGROUND: Diffusing alpha-emitters radiation therapy ("Alpha-DaRT") is a new method for treating solid tumors with alpha particles, relying on the release of the short-lived alpha-emitting daughter atoms of radium-224 from interstitial sources inserted into the tumor. Alpha-DaRT tumor dosimetry is governed by the spread of radium's progeny around the source, as described by an approximate framework called the "diffusion-leakage model". The most important model parameters are the diffusion lengths of radon-220 and lead-212, and their estimation is therefore essential for treatment planning. PURPOSE: Previous works have provided initial estimates for the dominant diffusion length, by measuring the activity spread inside mice-borne tumors several days after the insertion of an Alpha-DaRT source. The measurements, taken when lead-212 was in secular equilibrium with radium-224, were interpreted as representing the lead-212 diffusion length. The aim of this work is to provide first experimental estimates for the diffusion length of radon-220, using a new methodology. METHODS: The diffusion length of radon-220 was estimated from autoradiography measurements of histological sections taken from 24 mice-borne subcutaneous tumors of five different types. Unlike previous studies, the source dwell time inside the tumor was limited to 30 min, to prevent the buildup of lead-212. To investigate the contribution of potential non-diffusive processes, experiments were done in two sets: fourteen in vivo tumors, where during the treatment the tumors were still carried by the mice with active blood supply, and 10 ex-vivo tumors, where the tumors were excised before source insertion and kept in a medium at 37 ∘ C $37^\circ {\text{C}}$ with the source inside. RESULTS: The measured diffusion lengths of radon-220, extracted by fitting the recorded activity pattern up to 1.5 mm from the source, lie in the range 0.25 - 0.6 mm ${0.25-0.6}\nobreakspace {\text{mm}}$ , with no significant difference between the average values measured in in-vivo and ex-vivo tumors: L R n i n - v i v o = 0.40 ± 0.08 mm $L_{Rn}^{in-vivo}=0.40{\pm }0.08\nobreakspace {\text{mm}}$ versus L R n e x - v i v o = 0.39 ± 0.07 mm $L_{Rn}^{ex-vivo}=0.39{\pm }0.07\nobreakspace {\text{mm}}$ . However, in-vivo tumors display an enhanced spread of activity 2-3 mm away from the source. This effect is not explained by the current model and is much less pronounced in ex-vivo tumors. CONCLUSIONS: The average measured radon-220 diffusion lengths in both in-vivo and ex-vivo tumors are consistent with published data on the diffusion length of radon in water and lie close to the upper limit of the previously estimated range of 0.2 - 0.4 mm $0.2-0.4\nobreakspace {\text{mm}}$ . The observation that close to the source there is no apparent difference between in-vivo and ex-vivo tumors, and the good agreement with the theoretical model in this region suggest that the spread of radon-220 is predominantly diffusive in this region. The departure from the model prediction in in-vivo tumors at large radial distances may hint at potential vascular contribution, which will be the subject of future works.


Assuntos
Partículas alfa , Radônio , Animais , Camundongos , Partículas alfa/uso terapêutico , Difusão , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias/radioterapia , Rádio (Elemento)/uso terapêutico , Radioisótopos de Chumbo
3.
Med Phys ; 50(3): 1812-1823, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36517936

RESUMO

BACKGROUND: Diffusing alpha-emitters radiation therapy ("DaRT") is a new method, presently in clinical trials, which allows treating solid tumors by alpha particles. DaRT relies on interstitial seeds carrying µCi-level 224 Ra activity on their surface, which release a chain of short-lived alpha emitters that spread throughout the tumor volume primarily by diffusion. Alpha dose calculations in DaRT are based on describing the transport of alpha emitting atoms, requiring new modeling techniques. PURPOSE: A previous study introduced a simplified framework, the "diffusion-leakage (DL) model," for DaRT alpha dose calculations, and employed it to a point source, as a basic building block of arbitrary configurations of line sources. The aim of this work, which is divided into two parts, is to extend the model to realistic seed geometries (in Part I), and to employ single-seed calculations to study the properties of DaRT seed lattices (Part II). Such calculations can serve as a pragmatic guide for treatment planning in future clinical trials. METHODS: We employ the superposition of single-seed solutions, developed in Part I, to study the alpha dose in DaRT seed lattices and investigate the sensitivity of the required seed activity and spacing to changes in the DL model parameters and to seed placement errors. RESULTS: We show that the rapid fall-off of the dose, which guarantees sparing healthy tissue already 2-3 mm away from the tumor, strongly favors a hexagonal, rather than square, seed placement pattern. Realistic variations in the seed manufacturing parameters (224 Ra activity and emission rate of its daughters) are shown to have a negligible effect on the required lattice spacing. On the other hand, tumor parameters (i.e., diffusion lengths and 212 Pb leakage probability), as well as seed placement errors, have a significant effect. CONCLUSIONS: In most cases, hexagonal lattice spacing on the scale of ∼3.5-4.5 mm using seeds carrying a few µCi/cm 224 Ra will enable overcoming realistic uncertainties in measured tumor environment parameters, as well as seed placement errors, and result in therapeutically relevant alpha dose levels.


Assuntos
Braquiterapia , Neoplasias , Humanos , Braquiterapia/métodos , Neoplasias/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Med Phys ; 50(3): 1793-1811, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36464914

RESUMO

BACKGROUND: Diffusing alpha-emitters Radiation Therapy ("DaRT") is a new method, presently in clinical trials, which allows treating solid tumors by alpha particles. DaRT relies on interstitial seeds carrying µCi-level 224 Ra activity below their surface, which release a chain of short-lived alpha emitters that spread throughout the tumor volume primarily by diffusion. Alpha dose calculations in DaRT are based on describing the transport of alpha emitting atoms, requiring new modeling techniques. PURPOSE: A previous study introduced a simplified framework, the "Diffusion-Leakage (DL) model", for DaRT alpha dose calculations, and employed it to a point source, as a basic building block of arbitrary configurations of line sources. The aim of this work, which is divided into two parts, is to extend the model to realistic seed geometries (in Part I), and to employ single-seed calculations to study the properties of DaRT seed lattices (Part II). Such calculations can serve as a pragmatic guide for treatment planning in future clinical trials. METHODS: We derive a closed-form asymptotic solution for an infinitely long cylindrical source, and extend it to an approximate time-dependent expression that assumes a uniform temporal profile at all radial distances from the source. We then develop a finite-element one-dimensional numerical scheme for a complete time-dependent solution of this geometry and validate it against the closed-form expressions. Finally, we discuss a two-dimensional axisymmetric scheme for a complete time-dependent solution for a seed of finite diameter and length. Different solutions are compared over the relevant parameter space, providing guidelines on their usability and limitations. RESULTS: We show that approximating the seed as a finite line source comprised of point-like segments significantly underestimates the correct alpha dose, as predicted by the full two-dimensional calculation. The time-dependent one-dimensional solution is shown to coincide to sub-percent-level with the two-dimensional calculation in the seed midplane, and maintains an accuracy of a few percent up to ∼2 mm from the seed edge. CONCLUSIONS: For actual treatment plans, the full two-dimensional solution should be used to generate dose lookup tables, similarly to the TG-43 format employed in conventional brachytherapy. Given the accuracy of the one-dimensional solution up to ∼2 mm from the seed edge it can be used for efficient parametric studies of DaRT seed lattices.


Assuntos
Braquiterapia , Neoplasias , Humanos , Braquiterapia/métodos , Partículas alfa/uso terapêutico , Dosagem Radioterapêutica , Método de Monte Carlo
5.
Front Oncol ; 12: 888100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237307

RESUMO

Glioblastoma multiforme (GBM) is at present an incurable disease with a 5-year survival rate of 5.5%, despite improvements in treatment modalities such as surgery, radiation therapy, chemotherapy [e.g., temozolomide (TMZ)], and targeted therapy [e.g., the antiangiogenic agent bevacizumab (BEV)]. Diffusing alpha-emitters radiation therapy (DaRT) is a new modality that employs radium-224-loaded seeds that disperse alpha-emitting atoms inside the tumor. This treatment was shown to be effective in mice bearing human-derived GBM tumors. Here, the effect of DaRT in combination with standard-of-care therapies such as TMZ or BEV was investigated. In a viability assay, the combination of alpha radiation with TMZ doubled the cytotoxic effect of each of the treatments alone in U87 cultured cells. A colony formation assay demonstrated that the surviving fraction of U87 cells treated by TMZ in combination with alpha irradiation was lower than was achieved by alpha- or x-ray irradiation as monotherapies, or by x-ray combined with TMZ. The treatment of U87-bearing mice with DaRT and TMZ delayed tumor development more than the monotherapies. Unlike other radiation types, alpha radiation did not increase VEGF secretion from U87 cells in culture. BEV treatment introduced several days after DaRT implantation improved tumor control, compared to BEV or DaRT as monotherapies. The combination was also shown to be superior when starting BEV administration prior to DaRT implantation in large tumors relative to the seed size. BEV induced a decrease in CD31 staining under DaRT treatment, increased the diffusive spread of 224Ra progeny atoms in the tumor tissue, and decreased their clearance from the tumor through the blood. Taken together, the combinations of DaRT with standard-of-care chemotherapy or antiangiogenic therapy are promising approaches, which may improve the treatment of GBM patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA