Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 316, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480906

RESUMO

Warming can have profound impacts on ecological communities. However, explorations of how differences in biogeography and productivity might reshape the effect of warming have been limited to theoretical or proxy-based approaches: for instance, studies of latitudinal temperature gradients are often conflated with other drivers (e.g., species richness). Here, we overcome these limitations by using local geothermal temperature gradients across multiple high-latitude stream ecosystems. Each suite of streams (6-11 warmed by 1-15°C above ambient) is set within one of five regions (37 streams total); because the heating comes from the bedrock and is not confounded by changes in chemistry, we can isolate the effect of temperature. We found a negative overall relationship between diatom and invertebrate species richness and temperature, but the strength of the relationship varied regionally, declining more strongly in regions with low terrestrial productivity. Total invertebrate biomass increased with temperature in all regions. The latter pattern combined with the former suggests that the increased biomass of tolerant species might compensate for the loss of sensitive species. Our results show that the impact of warming can be dependent on regional conditions, demonstrating that local variation should be included in future climate projections rather than simply assuming universal relationships.


Assuntos
Ecossistema , Rios , Animais , Biomassa , Biodiversidade , Invertebrados
2.
mSystems ; 9(3): e0133123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376262

RESUMO

The ecological impacts of long-term (press) disturbance on mechanisms regulating the relative abundance (i.e., commonness or rarity) and temporal dynamics of species within a community remain largely unknown. This is particularly true for the functionally important arbuscular mycorrhizal (AM) fungi; obligate plant-root endosymbionts that colonize more than two-thirds of terrestrial plant species. Here, we use high-resolution amplicon sequencing to examine how AM fungal communities in a specific extreme ecosystem-mofettes or natural CO2 springs caused by geological CO2 exhalations-are affected by long-term stress. We found that in mofettes, specific and temporally stable communities form as a subset of the local metacommunity. These communities are less diverse and dominated by adapted, "stress tolerant" taxa. Those taxa are rare in control locations and more benign environments worldwide, but show a stable temporal pattern in the extreme sites, consistently dominating the communities in grassland mofettes. This pattern of lower diversity and high dominance of specific taxa has been confirmed as relatively stable over several sampling years and is independently observed across multiple geographic locations (mofettes in different countries). This study implies that the response of soil microbial community composition to long-term stress is relatively predictable, which can also reflect the community response to other anthropogenic stressors (e.g., heavy metal pollution or land use change). Moreover, as AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in community structure in response to long-term environmental change have the potential to impact terrestrial plant communities and their productivity.IMPORTANCEArbuscular mycorrhizal (AM) fungi form symbiotic relationships with more than two-thirds of plant species. In return for using plant carbon as their sole energy source, AM fungi improve plant mineral supply, water balance, and protection against pathogens. This work demonstrates the importance of long-term experiments to understand the effects of long-term environmental change and long-term disturbance on terrestrial ecosystems. We demonstrated a consistent response of the AM fungal community to a long-term stress, with lower diversity and a less variable AM fungal community over time under stress conditions compared to the surrounding controls. We have also identified, for the first time, a suite of AM fungal taxa that are consistently observed across broad geographic scales in stressed and anthropogenically heavily influenced ecosystems. This is critical because global environmental change in terrestrial ecosystems requires an integrative approach that considers both above- and below-ground changes and examines patterns over a longer geographic and temporal scale, rather than just single sampling events.


Assuntos
Micorrizas , Micorrizas/genética , Ecossistema , Dióxido de Carbono/farmacologia , Microbiologia do Solo , Plantas/microbiologia , Ambientes Extremos
3.
Nat Commun ; 14(1): 6482, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838711

RESUMO

Phytopathogenic fungi threaten global food security but the ecological drivers of their global diversity and biogeography remain unknown. Here, we construct and analyse a global atlas of potential phytopathogenic fungi from 20,312 samples across all continents and major oceanic island regions, eleven land cover types, and twelve habitat types. We show a peak in the diversity of phytopathogenic fungi in mid-latitude regions, in contrast to the latitudinal diversity gradients observed in aboveground organisms. Our study identifies climate as an important driver of the global distribution of phytopathogenic fungi, and our models suggest that their diversity and invasion potential will increase globally by 2100. Importantly, phytopathogen diversity will increase largely in forest (37.27-79.12%) and cropland (34.93-82.51%) ecosystems, and this becomes more pronounced under fossil-fuelled industry dependent future scenarios. Thus, we recommend improved biomonitoring in forests and croplands, and optimised sustainable development approaches to reduce potential threats from phytopathogenic fungi.


Assuntos
Ecossistema , Florestas , Fungos , Clima , Biodiversidade
4.
Nat Food ; 4(11): 996-1006, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37904026

RESUMO

Exploiting the potential benefits of plant-associated microbes represents a sustainable approach to enhancing crop productivity. Plant-beneficial bacteria (PBB) provide multiple benefits to plants. However, the biogeography and community structure remain largely unknown. Here we constructed a PBB database to couple microbial taxonomy with their plant-beneficial traits and analysed the global atlas of potential PBB from 4,245 soil samples. We show that the diversity of PBB peaks in low-latitude regions, following a strong latitudinal diversity gradient. The distribution of potential PBB was primarily governed by environmental filtering, which was mainly determined by local climate. Our projections showed that fossil-fuel-dependent future scenarios would lead to a significant decline of potential PBB by 2100, especially biocontrol agents (-1.03%) and stress resistance bacteria (-0.61%), which may potentially threaten global food production and (agro)ecosystem services.


Assuntos
Ecossistema , Solo , Solo/química , Microbiologia do Solo , Bactérias/genética , Plantas
5.
Bioresour Technol ; 363: 127979, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126844

RESUMO

Centrate is a low-cost alternative to synthetic fertilizers for microalgal cultivation, reducing environmental burdens and remediation costs. Adapted microalgae need to be selected and characterised to maximise biomass production and depuration efficiency. Here, the performance and composition of six microalgal communities cultivated both on synthetic media and centrate within semi-open tubular photobioreactors were investigated through Illumina sequencing. Biomass grown on centrate, exposed to a high concentration of ammonium, showed a higher quantity of nitrogen (5.6% dry weight) than the biomass grown on the synthetic media nitrate (3.9% dry weight). Eukaryotic inocula were replaced by other microalgae while cyanobacterial inocula were maintained. Communities were generally similar for the same inoculum between media, however, inoculation with cyanobacteria led to variability within the eukaryotic community. Where communities differed, centrate resulted in a higher richness and diversity. The higher nitrogen of centrate possibly led to higher abundance of genes coding for N metabolism enzymes.


Assuntos
Compostos de Amônio , Cianobactérias , Microalgas , Compostos de Amônio/metabolismo , Biomassa , Fertilizantes , Microalgas/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Fotobiorreatores/microbiologia , Crescimento Sustentável , Águas Residuárias
6.
Mol Ecol Resour ; 22(4): 1231-1246, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34551203

RESUMO

Metabarcoding of DNA extracted from environmental or bulk specimen samples is increasingly used to profile biota in basic and applied biodiversity research because of its targeted nature that allows sequencing of genetic markers from many samples in parallel. To achieve this, PCR amplification is carried out with primers designed to target a taxonomically informative marker within a taxonomic group, and sample-specific nucleotide identifiers are added to the amplicons prior to sequencing. The latter enables assignment of the sequences back to the samples they originated from. Nucleotide identifiers can be added during the metabarcoding PCR and during "library preparation", that is, when amplicons are prepared for sequencing. Different strategies to achieve this labelling exist. All have advantages, challenges and limitations, some of which can lead to misleading results, and in the worst case compromise the fidelity of the metabarcoding data. Given the range of questions addressed using metabarcoding, ensuring that data generation is robust and fit for the chosen purpose is critically important for practitioners seeking to employ metabarcoding for biodiversity assessments. Here, we present an overview of the three main workflows for sample-specific labelling and library preparation in metabarcoding studies on Illumina sequencing platforms; one-step PCR, two-step PCR, and tagged PCR. Further, we distill the key considerations for researchers seeking to select an appropriate metabarcoding strategy for their specific study. Ultimately, by gaining insights into the consequences of different metabarcoding workflows, we hope to further consolidate the power of metabarcoding as a tool to assess biodiversity across a range of applications.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Código de Barras de DNA Taxonômico/métodos , Primers do DNA/genética , Biblioteca Gênica , Reação em Cadeia da Polimerase
7.
Bioresour Technol ; 347: 126416, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34838970

RESUMO

Pure microalgae cultivation in organic wastes may be hampered by their low adaptation to extreme growth conditions and by the risk of microbial contamination. This work aimed to isolate self-adapted microalgae-microbial consortia able to survive in organic wastes characterized by extreme conditions, to be then proposed for technological application in removing carbon and nutrients from wastes' streams. To do so, sixteen organic wastes with different origins and consistency were sampled. Twelve microbial consortia were isolated from wastes and their eukaryotic and prokaryotic compositions were analyzed by next generation sequencing. Eight eukaryotic communities were dominated by Chlorophyta, led by Chlorella, able to survive in different wastes regardless of chemical-biological properties. Tetradesmus, the second most represented genus, grew preferentially in substrates with less stressing chemical-physical parameters. Chlorella and Tetradesmus were mostly isolated from cow slurry and derived wastes which proved to be the best local residual organic source.


Assuntos
Chlorella , Microalgas , Biomassa , Carbono , Consórcios Microbianos
8.
Glob Chang Biol ; 27(13): 3166-3178, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33797829

RESUMO

Ecological communities are increasingly exposed to multiple interacting stressors. For example, warming directly affects the physiology of organisms, eutrophication stimulates the base of the food web, and harvesting larger organisms for human consumption dampens top-down control. These stressors often combine in the natural environment with unpredictable results. Bacterial communities in coastal ecosystems underpin marine food webs and provide many important ecosystem services (e.g. nutrient cycling and carbon fixation). Yet, how microbial communities will respond to a changing climate remains uncertain. Thus, we used marine mesocosms to examine the impacts of warming, nutrient enrichment, and altered top-predator population size structure (common shore crab) on coastal microbial biofilm communities in a crossed experimental design. Warming increased bacterial α-diversity (18% increase in species richness and 67% increase in evenness), but this was countered by a decrease in α-diversity with nutrient enrichment (14% and 21% decrease for species richness and evenness, respectively). Thus, we show some effects of these stressors could cancel each other out under climate change scenarios. Warming and top-predator population size structure both affected bacterial biofilm community composition, with warming increasing the abundance of bacteria capable of increased mineralization of dissolved and particulate organic matter, such as Flavobacteriia, Sphingobacteriia, and Cytophagia. However, the community shifts observed with warming depended on top-predator population size structure, with Sphingobacteriia increasing with smaller crabs and Cytophagia increasing with larger crabs. These changes could alter the balance between mineralization and carbon sequestration in coastal ecosystems, leading to a positive feedback loop between warming and CO2 production. Our results highlight the potential for warming to disrupt microbial communities and biogeochemical cycling in coastal ecosystems, and the importance of studying these effects in combination with other environmental stressors.


Assuntos
Ecossistema , Microbiota , Bactérias , Biofilmes , Mudança Climática , Cadeia Alimentar , Humanos
9.
Environ Int ; 147: 106327, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33387881

RESUMO

Particle size is a significant factor in determining the dispersal and inhalation risk from bioaerosols. Green-waste composting is a significant source of bioaerosols (including pathogens), but little is known about the distribution of specific taxa across size fractions. To characterise size fractionated bioaerosol emissions from a compost facility, we used a Spectral Intensity Bioaerosol Sensor (SIBS) to quantify total bioaerosols and qPCR and metabarcoding to quantify microbial bioaerosols. Overall, sub-micron bioaerosols predominated, but molecular analysis showed that most (>75%) of the airborne microorganisms were associated with the larger size fractions (>3.3 µm da). The microbial taxa varied significantly by size, with Bacilli dominating the larger, and Actinobacteria the smaller, size fractions. The human pathogen Aspergillus fumigatus dominated the intermediate size fractions (>50% da 1.1-4.7 µm), indicating that it has the potential to disperse widely and once inhaled may penetrate deep into the respiratory system. The abundance of Actinobacteria (>60% at da < 2.1 µm) and other sub-micron bioaerosols suggest that the main health effects from composting bioaerosols may come from allergenic respiratory sensitisation rather than directly via infection. These results emphasise the need to better understand the size distributions of bioaerosols across all taxa in order to model their dispersal and to inform risk assessments of human health related to composting facilities.


Assuntos
Compostagem , Aerossóis , Microbiologia do Ar , Bactérias/genética , Humanos , Tamanho da Partícula
11.
Sci Total Environ ; 719: 137542, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32120091

RESUMO

Molecular and chemical fingerprints from 10 contrasting outdoor air environments, including three agricultural farms, three urban parks and four industrial sites were investigated to advance our understanding of bioaerosol distribution and emissions. Both phospholipid fatty acids (PLFA) and microbial volatile organic compounds (MVOC) profiles showed a different distribution in summer compared to winter. Further to this, a strong positive correlation was found between the total concentration of MVOCs and PLFAs (r = 0.670, p = 0.004 in winter and r = 0.767, p = 0.001 in summer) demonstrating that either chemical or molecular fingerprints of outdoor environments can provide good insights into the sources and distribution of bioaerosols. Environment specific variables and most representative MVOCs were identified and linked to microbial species emissions via a MVOC database and PLFAs taxonomical classification. While similar MVOCs and PLFAs were identified across all the environments suggesting common microbial communities, specific MVOCs were identified for each contrasting environment. Specifically, 3,4-dimethylpent-1-yn-3-ol, ethoxyethane and propanal were identified as key MVOCs for the industrial areas (and were correlated to fungi, Staphylococcus aureus (Gram positive bacteria) and Gram negative bacteria, R = 0.863, R = 0.618 and R = 0.676, respectively) while phthalic acid, propene and isobutane were key for urban environments (correlated to Gram negative bacteria, fungi and bacteria, R = 0.874, R = 0.962 and R = 0.969 respectively); and ethanol, 2-methyl-2-propanol, 2-methyl-1-pentene, butane, isoprene and methyl acetate were key for farms (correlated to fungi, Gram positive bacteria and bacteria, R = 0.690 and 0.783, R = 0.706 and R = 0.790, 0.761 and 0.768). The combination of MVOCs and PLFAs markers can assist in rapid microbial fingerprinting of distinct environmental influences on ambient air quality.


Assuntos
Fungos , Microbiologia do Ar , Bactérias , Inglaterra , Estações do Ano , Compostos Orgânicos Voláteis
12.
mSystems ; 5(1)2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911465

RESUMO

Fungi underpin almost all terrestrial ecosystem functions, yet our understanding of their community ecology lags far behind that of other organisms. Here, red paddy soils in subtropical China were collected across a soil depth profile, comprising 0-to-10-cm- (0-10cm-), 10-20cm-, and 20-40cm-deep layers. Using Illumina MiSeq amplicon sequencing of the internal transcribed spacer (ITS) region, distance-decay relationships (DDRs), and ecological models, fungal assemblages and their spatial patterns were investigated from each soil depth. We observed significant spatial variation in fungal communities and found that environmental heterogeneity decreased with soil depth, while spatial variation in fungal communities showed the opposite trend. DDRs occurred only in 0-10cm- and 10-20cm-deep soil layers, not in the 20-40cm layer. Our analyses revealed that the fungal community assembly in the 0-10cm layer was primarily governed by environmental filtering and a high dispersal rate, while in the deeper layer (20-40cm), it was primarily governed by dispersal limitation with minimal environmental filtering. Both environmental filtering and dispersal limitation controlled fungal community assembly in the 10-20cm layer, with dispersal limitation playing the major role. Results demonstrate the decreasing importance of environmental filtering and an increase in the importance of dispersal limitation in structuring fungal communities from shallower to deeper soils. Effectively, "everything is everywhere, but the environment selects," although only in shallower soils that are easily accessible to dispersive fungal propagules. This work highlights that perceived drivers of fungal community assembly are dependent on sampling depth, suggesting that caution is required when interpreting diversity patterns from samples that integrate across depths.IMPORTANCE In this work, Illumina MiSeq amplicon sequencing of the ITS region was used to investigate the spatial variation and assembly mechanisms of fungal communities from different soil layers across paddy fields in subtropical China, and the results demonstrate the decreasing importance of environmental filtering and an increase in the importance of dispersal limitation in structuring fungal communities from shallower to deeper soils. Therefore, the results of this study highlight that perceived drivers of fungal community assembly are dependent on sampling depth and suggest that caution is required when interpreting diversity patterns from samples that integrate across depths. This is the first study focusing on assemblages of fungal communities in different soil layers on a relatively large scale, and we thus believe that this study is of great importance to researchers and readers in microbial ecology, especially in microbial biogeography, because the results can provide sampling guidance in future studies of microbial biogeography.

13.
Microorganisms ; 7(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547404

RESUMO

Microbes drive leaf litter decomposition, and their communities are adapted to the local vegetation providing that litter. However, whether these local microbial communities confer a significant home-field advantage in litter decomposition remains unclear, with contrasting results being published. Here, we focus on a litter transplantation experiment from oak forests (home site) to two away sites without oak in South Tyrol (Italy). We aimed to produce an in-depth analysis of the fungal and bacterial decomposer communities using Illumina sequencing and qPCR, to understand whether local adaptation occurs and whether this was associated with litter mass loss dynamics. Temporal shifts in the decomposer community occurred, reflecting changes in litter chemistry over time. Fungal community composition was site dependent, while bacterial composition did not differ across sites. Total litter mass loss and rates of litter decomposition did not change across sites. Litter quality influenced the microbial community through the availability of different carbon sources. Additively, our results do not support the hypothesis that locally adapted microbial decomposers lead to a greater or faster mass loss. It is likely that high functional redundancy within decomposer communities regulated the decomposition, and thus greater future research attention should be given to trophic guilds rather than taxonomic composition.

14.
Mol Ecol ; 28(14): 3445-3458, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31233651

RESUMO

The ecological impacts of long-term elevated atmospheric CO2 (eCO2 ) levels on soil microbiota remain largely unknown. This is particularly true for the arbuscular mycorrhizal (AM) fungi, which form mutualistic associations with over two-thirds of terrestrial plant species and are entirely dependent on their plant hosts for carbon. Here, we use high-resolution amplicon sequencing (Illumina, HiSeq) to quantify the response of AM fungal communities to the longest running (>15 years) free-air carbon dioxide enrichment (FACE) experiment in the Northern Hemisphere (GiFACE); providing the first evaluation of these responses from old-growth (>100 years) semi-natural grasslands subjected to a 20% increase in atmospheric CO2 . eCO2 significantly increased AM fungal richness but had a less-pronounced impact on the composition of their communities. However, while broader changes in community composition were not observed, more subtle responses of specific AM fungal taxa were with populations both increasing and decreasing in abundance in response to eCO2 . Most population-level responses to eCO2 were not consistent through time, with a significant interaction between sampling time and eCO2 treatment being observed. This suggests that the temporal dynamics of AM fungal populations may be disturbed by anthropogenic stressors. As AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in population densities in response to eCO2 may significantly impact terrestrial plant communities and their productivity. Thus, predictions regarding future terrestrial ecosystems must consider changes both aboveground and belowground, but avoid relying on broad-scale community-level responses of soil microbes observed on single occasions.


Assuntos
Atmosfera/química , Dióxido de Carbono/farmacologia , Micobioma/efeitos dos fármacos , Micorrizas/fisiologia , Biodiversidade , Pradaria , Modelos Lineares , Análise Multivariada , Micorrizas/efeitos dos fármacos , Fatores de Tempo
16.
Mol Ecol ; 28(3): 525-527, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30793869

RESUMO

Tropical forests have long fascinated ecologists, inspiring a plethora of research into the mechanisms regulating their immense biodiversity, which originally captured the interests of early natural historians and explorers, and that still persists to this day. A new focus of this research emerged in the early 2000s highlighting the potential role of neutral (stochastic) processes in regulating the composition and diversity of tropical forest communities, and thus the maintenance of a large portion of global biodiversity (Hubbell, ). This strictly contrasted the long-held belief that communities assembled via the sorting of species (and their abundances) via a deterministic response to local abiotic and biotic environmental conditions, reflecting the niche of each species (Leibold & McPeek, ). Yet, it is unlikely that the assembly of any community is solely governed by either stochastic or deterministic processes, but instead a combination of both. However, whether deterministic processes via niche-based environmental sorting of species, or stochastic processes reflecting pattens of dispersal limitation, neutral effects and ecological drift dominate is often unclear. This prompts questions as to whether the relative influence of one process over another is dependent on the scale (spatial or temporal) or context of the study, or specific traits of the taxa under investigation (e.g., body size). In a From the Cover paper in this issue of Molecular Ecology, Zinger et al. () tackle all these issues and show, among other things, that for soil microbes and mesofauna from tropical forests, the relative contribution of stochastic and deterministic processes in assembling their communities is strongly dependent on the body size or the studied taxa.


Assuntos
Florestas , Solo , Biodiversidade , Tamanho Corporal , Microbiologia do Solo
17.
Mol Ecol Resour ; 19(3): 672-690, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30735594

RESUMO

Bioaerosols (or biogenic aerosols) have largely been overlooked by molecular ecologists. However, this is rapidly changing as bioaerosols play key roles in public health, environmental chemistry and the dispersal ecology of microbes. Due to the low environmental concentrations of bioaerosols, collecting sufficient biomass for molecular methods is challenging. Currently, no standardized methods for bioaerosol collection for molecular ecology research exist. Each study requires a process of optimization, which greatly slows the advance of bioaerosol science. Here, we evaluated air filtration and liquid impingement for bioaerosol sampling across a range of environmental conditions. We also investigated the effect of sampling matrices, sample concentration strategies and sampling duration on DNA yield. Air filtration using polycarbonate filters gave the highest recovery, but due to the faster sampling rates possible with impingement, we recommend this method for fine -scale temporal/spatial ecological studies. To prevent bias for the recovery of Gram-positive bacteria, we found that the matrix for impingement should be phosphate-buffered saline. The optimal method for bioaerosol concentration from the liquid matrix was centrifugation. However, we also present a method using syringe filters for rapid in-field recovery of bioaerosols from impingement samples, without compromising microbial diversity for high -throughput sequencing approaches. Finally, we provide a resource that enables molecular ecologists to select the most appropriate sampling strategy for their specific research question.


Assuntos
Aerossóis , Microbiologia do Ar , Bactérias/classificação , Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos
18.
ISME J ; 13(5): 1330-1344, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30692628

RESUMO

The composition and structure of plant-root-associated fungal communities are determined by local abiotic and biotic conditions. However, the relative influence and identity of relationships to abiotic and biotic factors may differ across environmental and ecological contexts, and fungal functional groups. Thus, understanding which aspects of root-associated fungal community ecology generalise across contexts is the first step towards a more predictive framework. We investigated how the relative importance of biotic and abiotic factors scale across environmental and ecological contexts using high-throughput sequencing (ca. 55 M Illumina metabarcoding sequences) of >260 plant-root-associated fungal communities from six UK salt marshes across two geographic regions (South-East and North-West England) in winter and summer. Levels of root-associated fungal diversity were comparable with forests and temperate grasslands, quadrupling previous estimates of salt-marsh fungal diversity. Whilst abiotic variables were generally most important, a range of site- and spatial scale-specific abiotic and biotic drivers of diversity and community composition were observed. Consequently, predictive models of diversity trained on one site, extrapolated poorly to others. Fungal taxa from the same functional groups responded similarly to the specific drivers of diversity and composition. Thus site, spatial scale and functional group are key factors that, if accounted for, may lead to a more predictive understanding of fungal community ecology.


Assuntos
Fungos/isolamento & purificação , Micobioma , Raízes de Plantas/microbiologia , Biodiversidade , Ecologia , Inglaterra , Florestas , Fungos/classificação , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microbiologia do Solo , Especificidade da Espécie
19.
Sci Total Environ ; 631-632: 1059-1069, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29727932

RESUMO

Air samples from four contrasting outdoor environments including a park, an arable farm, a waste water treatment plant and a composting facility were analysed during the summer and winter months. The aim of the research was to study the feasibility of differentiating microbial communities from urban, rural and industrial areas between seasons with chemical and molecular markers such as microbial volatile organic compounds (MVOCs) and phospholipid fatty acids (PLFAs). Air samples (3l) were collected every 2h for a total of 6h in order to assess the temporal variations of MVOCs and PLFAs along the day. MVOCs and VOCs concentrations varied over the day, especially in the composting facility which was the site where more human activities were carried out. At this site, total VOC concentration varied between 80 and 170µgm-3 in summer and 20-250µgm-3 in winter. The composition of MVOCs varied between sites due to the different biological substrates including crops, waste water, green waste or grass. MVOCs composition also differed between seasons as in summer they are more likely to get modified by oxidation processes in the atmosphere and in winter by reduction processes. The composition of microbial communities identified by the analysis of PLFAs also varied among the different locations and between seasons. The location with higher concentrations of PLFAs in summer was the farm (7297ngm-3) and in winter the park (11,724ngm-3). A specific set of MVOCs and PLFAs that most represent each one of the locations was identified by principal component analyses (PCA) and canonical analyses. Further to this, concentrations of both total VOCs and PLFAs were at least three times higher in winter than in summer. The difference in concentrations between summer and winter suggest that seasonal variations should be considered when assessing the risk of exposure to these compounds.

20.
New Phytol ; 218(2): 542-553, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29468690

RESUMO

There is consensus that plant species richness enhances plant productivity within natural grasslands, but the underlying drivers remain debated. Recently, differential accumulation of soil-borne fungal pathogens across the plant diversity gradient has been proposed as a cause of this pattern. However, the below-ground environment has generally been treated as a 'black box' in biodiversity experiments, leaving these fungi unidentified. Using next generation sequencing and pathogenicity assays, we analysed the community composition of root-associated fungi from a biodiversity experiment to examine if evidence exists for host specificity and negative density dependence in the interplay between soil-borne fungi, plant diversity and productivity. Plant species were colonised by distinct (pathogenic) fungal communities and isolated fungal species showed negative, species-specific effects on plant growth. Moreover, 57% of the pathogenic fungal operational taxonomic units (OTUs) recorded in plant monocultures were not detected in eight plant species plots, suggesting a loss of pathogenic OTUs with plant diversity. Our work provides strong evidence for host specificity and negative density-dependent effects of root-associated fungi on plant species in grasslands. Our work substantiates the hypothesis that fungal root pathogens are an important driver of biodiversity-ecosystem functioning relationships.


Assuntos
Biodiversidade , Fungos/fisiologia , Desenvolvimento Vegetal , Plantas/microbiologia , Microbiologia do Solo , Biomassa , Fungos/patogenicidade , Interações Hospedeiro-Patógeno , Modelos Biológicos , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...